55 research outputs found

    Chronic subordination stress selectively downregulates the insulin signaling pathway in liver and skeletal muscle but not in adipose tissue of male mice

    Get PDF
    Chronic stress has been associated with obesity, glucose intolerance, and insulin resistance. We developed a model of chronic psychosocial stress (CPS) in which subordinate mice are vulnerable to obesity and the metabolic-like syndrome while dominant mice exhibit a healthy metabolic phenotype. Here we tested the hypothesis that the metabolic difference between subordinate and dominant mice is associated with changes in functional pathways relevant for insulin sensitivity, glucose and lipid homeostasis. Male mice were exposed to CPS for four weeks and fed either a standard diet or a high-fat diet (HFD). We first measured, by real-time PCR candidate genes, in the liver, skeletal muscle, and the perigonadal white adipose tissue (pWAT). Subsequently, we used a probabilistic analysis approach to analyze different ways in which signals can be transmitted across the pathways in each tissue. Results showed that subordinate mice displayed a drastic downregulation of the insulin pathway in liver and muscle, indicative of insulin resistance, already on standard diet. Conversely, pWAT showed molecular changes suggestive of facilitated fat deposition in an otherwise insulin-sensitive tissue. The molecular changes in subordinate mice fed a standard diet were greater compared to HFD-fed controls. Finally, dominant mice maintained a substantially normal metabolic and molecular phenotype even when fed a HFD. Overall, our data demonstrate that subordination stress is a potent stimulus for the downregulation of the insulin signaling pathway in liver and muscle and a major risk factor for the development of obesity, insulin resistance, and type 2 diabetes mellitus.Supported by UofMN Medical School start-up funds to AB, Medical Research Council MRC Disease Model Core and British Heart Foundation program grants to AVP, and BIO2011-27069 from the Spanish Ministry of Economy and Competitiveness and PROMETEOII/2014/025 from the GVA-FEDER to JD. VS was supported by a graduate student fellowship of the University of Parma. CC was supported by EU FP7-People Project(ref 316861) "MLPM2012: Machine Learning For Personalized Medicine".This is the final version of the article. It first appeared from Taylor & Francis via http://dx.doi.org/10.3109/10253890.2016.115149

    Chronic subordination stress selectively downregulates the insulin signaling pathway in liver and skeletal muscle but not in adipose tissue of male mice.

    Get PDF
    Chronic stress has been associated with obesity, glucose intolerance, and insulin resistance. We developed a model of chronic psychosocial stress (CPS) in which subordinate mice are vulnerable to obesity and the metabolic-like syndrome while dominant mice exhibit a healthy metabolic phenotype. Here we tested the hypothesis that the metabolic difference between subordinate and dominant mice is associated with changes in functional pathways relevant for insulin sensitivity, glucose and lipid homeostasis. Male mice were exposed to CPS for four weeks and fed either a standard diet or a high-fat diet (HFD). We first measured, by real-time PCR candidate genes, in the liver, skeletal muscle, and the perigonadal white adipose tissue (pWAT). Subsequently, we used a probabilistic analysis approach to analyze different ways in which signals can be transmitted across the pathways in each tissue. Results showed that subordinate mice displayed a drastic downregulation of the insulin pathway in liver and muscle, indicative of insulin resistance, already on standard diet. Conversely, pWAT showed molecular changes suggestive of facilitated fat deposition in an otherwise insulin-sensitive tissue. The molecular changes in subordinate mice fed a standard diet were greater compared to HFD-fed controls. Finally, dominant mice maintained a substantially normal metabolic and molecular phenotype even when fed a HFD. Overall, our data demonstrate that subordination stress is a potent stimulus for the downregulation of the insulin signaling pathway in liver and muscle and a major risk factor for the development of obesity, insulin resistance, and type 2 diabetes mellitus.Supported by UofMN Medical School start-up funds to AB, Medical Research Council MRC Disease Model Core and British Heart Foundation program grants to AVP, and BIO2011-27069 from the Spanish Ministry of Economy and Competitiveness and PROMETEOII/2014/025 from the GVA-FEDER to JD. VS was supported by a graduate student fellowship of the University of Parma. CC was supported by EU FP7-People Project(ref 316861) "MLPM2012: Machine Learning For Personalized Medicine".This is the final version of the article. It first appeared from Taylor & Francis via http://dx.doi.org/10.3109/10253890.2016.115149

    Inactivation of Ppp1r15a minimises weight gain and insulin resistance during caloric excess in female mice.

    Get PDF
    Phosphorylation of the translation initiation factor eIF2α within the mediobasal hypothalamus is known to suppress food intake, but the role of the eIF2α phosphatases in regulating body weight is poorly understood. Mice deficient in active PPP1R15A, a stress-inducible eIF2α phosphatase, are healthy and more resistant to endoplasmic reticulum stress than wild type controls. We report that when female Ppp1r15a mutant mice are fed a high fat diet they gain less weight than wild type littermates owing to reduced food intake. This results in healthy leaner Ppp1r15a mutant animals with reduced hepatic steatosis and improved insulin sensitivity, albeit with a possible modest defect in insulin secretion. By contrast, no weight differences are observed between wild type and Ppp1r15a deficient mice fed a standard diet. We conclude that female mice lacking the C-terminal PP1-binding domain of PPP1R15A show reduced dietary intake and preserved glucose tolerance. Our data indicate that this results in reduced weight gain and protection from diet-induced obesity.The work was also supported by Diabetes UK and the MRC [G1002610]. VP held an Arthur and Sadie Pethybridge PhD Studentship from Diabetes UK. The CIMR microscopy core facility is supported by a Wellcome Trust Strategic Award [100140] and a Wellcome Trust equipment grant [093026]

    P465L pparγ mutation confers partial resistance to the hypolipidemic action of fibrates.

    Get PDF
    Familial partial lipodystrophic syndrome 3 (FPLD3) is associated with mutations in the transcription factor PPAR. The P467L mutant confers a dominant negative effect. We have previously investigated the pathophysiology of FPLD3 using a humanised mouse harbouring an equivalent mutation (P465L) in PPAR that recapitulated the human clinical phenotype. One of the key clinical manifestations observed in humans and mice is the accumulation of fat in the liver. Here, we dissect the molecular mechanisms that facilitate accumulation of lipids in the liver and characterise the negative effect of the PPAR mutation on the activation of PPAR in vivo by fibrates. P465L mice have increased insulin and FFAs, decreased secretion of VLDL when fed HFD and impaired hypolipidemic response to WY14643. Thus, the phenotype of PPAR mutations may synergise with defects on PPAR function, indicating that the phenotype of the FPLD3 patients may not only be attributed to the dysfunction of PPAR

    Autophagy-mediated NCOR1 degradation is required for brown fat maturation and thermogenesis

    Full text link
    Brown adipose tissue (BAT) thermogenesis affects energy balance, and thereby it has the potential to induce weight loss and to prevent obesity. Here, we document a macroautophagic/autophagic-dependent mechanism of peroxisome proliferator-activated receptor gamma (PPARG) activity regulation that induces brown adipose differentiation and thermogenesis and that is mediated by TP53INP2. Disruption of TP53INP2-dependent autophagy reduced brown adipogenesis in cultured cells. In vivo specific-tp53inp2 ablation in brown precursor cells or in adult mice decreased the expression of thermogenic and mature adipocyte genes in BAT. As a result, TP53INP2-deficient mice had reduced UCP1 content in BAT and impaired maximal thermogenic capacity, leading to lipid accumulation and to positive energy balance. Mechanistically, TP53INP2 stimulates PPARG activity and adipogenesis in brown adipose cells by promoting the autophagic degradation of NCOR1, a PPARG co-repressor. Moreover, the modulation of TP53INP2 expression in BAT and in human brown adipocytes suggests that this protein increases PPARG activity during metabolic activation of brown fat. In all, we have identified a novel molecular explanation for the contribution of autophagy to BAT energy metabolism that could facilitate the design of therapeutic strategies against obesity and its metabolic complications

    Semaphorin 4B is an ADAM17-cleaved adipokine that inhibits adipocyte differentiation and thermogenesis

    Get PDF
    Objective: The metalloprotease ADAM17 (also called TACE) plays fundamental roles in homeostasis by shedding key signaling molecules from the cell surface. Although its importance for the immune system and epithelial tissues is well-documented, little is known about the role of ADAM17 in metabolic homeostasis. The purpose of this study was to determine the impact of ADAM17 expression, specifically in adipose tissues, on metabolic homeostasis.Methods: We used histopathology, molecular, proteomic, transcriptomic, in vivo integrative physiological and ex vivo biochemical approaches to determine the impact of adipose tissue-specific deletion of ADAM17 upon adipocyte and whole organism metabolic physiology.Results: ADAM17adipoq-creD/D mice exhibited a hypermetabolic phenotype characterized by elevated energy consumption and increased levels of adipocyte thermogenic gene expression. On a high fat diet, these mice were more thermogenic, while exhibiting elevated expression levels of genes associated with lipid oxidation and lipolysis. This hypermetabolic phenotype protected mutant mice from obesogenic challenge, limiting weight gain, hepatosteatosis and insulin resistance. Activation of beta-adrenoceptors by the neurotransmitter norepinephrine, a key regulator of adipocyte physiology, triggered the shedding of ADAM17 substrates, and regulated ADAM17 expression at the mRNA and protein levels, hence identifying a functional connection between thermogenic licensing and the regulation of ADAM17. Proteomic studies identified Semaphorin 4B (SEMA4B), as a novel ADAM17-shed adipokine, whose expression is regulated by physiological thermogenic cues, that acts to inhibit adipocyte differentiation and dampen thermogenic responses in adipocytes. Transcriptomic data showed that cleaved SEMA4B acts in an autocrine manner in brown adipocytes to repress the expression of genes involved in adipogenesis, thermogenesis, and lipid uptake, storage and catabolism.Conclusions: Our findings identify a novel ADAM17-dependent axis, regulated by beta-adrenoceptors and mediated by the ADAM17-cleaved form of SEMA4B, that modulates energy balance in adipocytes by inhibiting adipocyte differentiation, thermogenesis and lipid catabolism.(c) 2023 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    A stromal cell niche sustains ILC2-mediated type-2 conditioning in adipose tissue.

    Get PDF
    Group-2 innate lymphoid cells (ILC2), type-2 cytokines, and eosinophils have all been implicated in sustaining adipose tissue homeostasis. However, the interplay between the stroma and adipose-resident immune cells is less well understood. We identify that white adipose tissue-resident multipotent stromal cells (WAT-MSCs) can act as a reservoir for IL-33, especially after cell stress, but also provide additional signals for sustaining ILC2. Indeed, we demonstrate that WAT-MSCs also support ICAM-1-mediated proliferation and activation of LFA-1-expressing ILC2s. Consequently, ILC2-derived IL-4 and IL-13 feed back to induce eotaxin secretion from WAT-MSCs, supporting eosinophil recruitment. Thus, MSCs provide a niche for multifaceted dialogue with ILC2 to sustain a type-2 immune environment in WAT

    Defective peroxisomal proliferators activated receptor gamma activity due to dominant-negative mutation synergizes with hypertension to accelerate cardiac fibrosis in mice

    Get PDF
    Aims Humans with inactivating mutations in peroxisomal proliferators activated receptor gamma (PPARγ) typically develop a complex metabolic syndrome characterized by insulin resistance, diabetes, lipodystrophy, hypertension, and dyslipidaemia which is likely to increase their cardiovascular risk. Despite evidence that the activation of PPARγ may prevent cardiac fibrosis and hypertrophy, recent evidence has suggested that pharmacological activation of PPARγ causes increased cardiovascular mortality. In this study, we investigated the effects of defective PPARγ function on the development of cardiac fibrosis and hypertrophy in a murine model carrying a human dominant‐negative mutation in PPARγ. Methods and results Mice with a dominant‐negative point mutation in PPARγ (P465L) and their wild‐type (WT) littermates were treated with either subcutaneous angiotensin II (AngII) infusion or saline for 2 weeks. Heterozygous P465L and WT mice developed a similar increase in systolic blood pressure, but the mutant mice developed significantly more severe cardiac fibrosis to AngII that correlated with increased expression of profibrotic genes. Both groups similarly increased the heart weight to body weight ratio compared with saline‐treated controls. There were no differences in fibrosis between saline‐treated WT and P465L mice. Conclusion These results show synergistic pathogenic effects between the presence of defective PPARγ and AngII‐induced hypertension and suggest that patients with PPARγ mutation and hypertension may need more aggressive therapeutic measures to reduce the risk of accelerated cardiac fibrosis

    Adaptive changes of the Insig1/SREBP1/SCD1 set point help adipose tissue to cope with increased storage demands of obesity.

    Get PDF
    The epidemic of obesity imposes unprecedented challenges on human adipose tissue (WAT) storage capacity that may benefit from adaptive mechanisms to maintain adipocyte functionality. Here, we demonstrate that changes in the regulatory feedback set point control of Insig1/SREBP1 represent an adaptive response that preserves WAT lipid homeostasis in obese and insulin-resistant states. In our experiments, we show that Insig1 mRNA expression decreases in WAT from mice with obesity-associated insulin resistance and from morbidly obese humans and in in vitro models of adipocyte insulin resistance. Insig1 downregulation is part of an adaptive response that promotes the maintenance of SREBP1 maturation and facilitates lipogenesis and availability of appropriate levels of fatty acid unsaturation, partially compensating the antilipogenic effect associated with insulin resistance. We describe for the first time the existence of this adaptive mechanism in WAT, which involves Insig1/SREBP1 and preserves the degree of lipid unsaturation under conditions of obesity-induced insulin resistance. These adaptive mechanisms contribute to maintain lipid desaturation through preferential SCD1 regulation and facilitate fat storage in WAT, despite on-going metabolic stress

    Defective extracellular matrix remodeling in brown adipose tissue is associated with fibro-inflammation and reduced diet-induced thermogenesis

    Get PDF
    © 2023 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).The relevance of extracellular matrix (ECM) remodeling is reported in white adipose tissue (AT) and obesity-related dysfunctions, but little is known about the importance of ECM remodeling in brown AT (BAT) function. Here, we show that a time course of high-fat diet (HFD) feeding progressively impairs diet-induced thermogenesis concomitantly with the development of fibro-inflammation in BAT. Higher markers of fibro-inflammation are associated with lower cold-induced BAT activity in humans. Similarly, when mice are housed at thermoneutrality, inactivated BAT features fibro-inflammation. We validate the pathophysiological relevance of BAT ECM remodeling in response to temperature challenges and HFD using a model of a primary defect in the collagen turnover mediated by partial ablation of the Pepd prolidase. Pepd-heterozygous mice display exacerbated dysfunction and BAT fibro-inflammation at thermoneutrality and in HFD. Our findings show the relevance of ECM remodeling in BAT activation and provide a mechanism for BAT dysfunction in obesity.This work is supported by the Wellcome strategic award (100574/Z/12/Z); MRC MDU: MC_UU_12012/2 and MC_UU_12012/5 (The Disease Model Core, Biochemistry Assay Lab, Histology Core, and the Genomics and Transcriptomics Core); the Wellcome grant 10953/Z/15/Z (I.S.); the Wellcome Cambridge Trust scholarship (E.F.-J.); the Spanish Ministry of Economy and Competitiveness (SAF2017-88908-R) and PT17/0009/0006 from the ISCIII (C.Ç. and J.D.B.); the Academy of Finland (grants 259926, 265204, 292839, 314456, and 335446), the Paulo Foundation, the Finnish Cultural Foundation Southwest Finland Regional Fund, the Turku University Hospital Research Funds, and the European Union (EUFP7 project 278373; DIABAT) (K.A.V. and M.U.-D.); the Fundación Ramón Areces (BEVP32P01S10090) and subsequently by a Sir Henry Wellcome postdoctoral fellowship (222748/Z/21/Z) (S.R.-F.); We thank the Wellcome-Trust Sanger Institute Mouse Genetics Project (Sanger MGP) and its funders for providing the mutant mouse line (Pepd<tm1a[KOMP]Wtsi). Funding and associated primary phenotypic information may be found at www.sanger.ac.uk/mouseportal.Peer reviewe
    corecore