31 research outputs found
Effect of image compression and scaling on automated scoring of immunohistochemical stainings and segmentation of tumor epithelium
<p>Abstract</p> <p>Background</p> <p>Digital whole-slide scanning of tissue specimens produces large images demanding increasing storing capacity. To reduce the need of extensive data storage systems image files can be compressed and scaled down. The aim of this article is to study the effect of different levels of image compression and scaling on automated image analysis of immunohistochemical (IHC) stainings and automated tumor segmentation.</p> <p>Methods</p> <p>Two tissue microarray (TMA) slides containing 800 samples of breast cancer tissue immunostained against Ki-67 protein and two TMA slides containing 144 samples of colorectal cancer immunostained against EGFR were digitized with a whole-slide scanner. The TMA images were JPEG2000 wavelet compressed with four compression ratios: lossless, and 1:12, 1:25 and 1:50 lossy compression. Each of the compressed breast cancer images was furthermore scaled down either to 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64 or 1:128. Breast cancer images were analyzed using an algorithm that quantitates the extent of staining in Ki-67 immunostained images, and EGFR immunostained colorectal cancer images were analyzed with an automated tumor segmentation algorithm. The automated tools were validated by comparing the results from losslessly compressed and non-scaled images with results from conventional visual assessments. Percentage agreement and kappa statistics were calculated between results from compressed and scaled images and results from lossless and non-scaled images.</p> <p>Results</p> <p>Both of the studied image analysis methods showed good agreement between visual and automated results. In the automated IHC quantification, an agreement of over 98% and a kappa value of over 0.96 was observed between losslessly compressed and non-scaled images and combined compression ratios up to 1:50 and scaling down to 1:8. In automated tumor segmentation, an agreement of over 97% and a kappa value of over 0.93 was observed between losslessly compressed images and compression ratios up to 1:25.</p> <p>Conclusions</p> <p>The results of this study suggest that images stored for assessment of the extent of immunohistochemical staining can be compressed and scaled significantly, and images of tumors to be segmented can be compressed without compromising computer-assisted analysis results using studied methods.</p> <p>Virtual slides</p> <p>The virtual slide(s) for this article can be found here: <url>http://www.diagnosticpathology.diagnomx.eu/vs/2442925476534995</url></p
An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers
Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe
Stabilising selection on immune response in male black grouse Lyrurus tetrix
Illnesses caused by a variety of micro- and macro- organisms can negatively affect individualsâ fitness, leading to the expectation that immunity is under positive selection. However, immune responses are costly and individuals must trade-off their immune response with other fitness components (e.g. survival or reproductive success) meaning that individuals with intermediate response may have the greatest overall fitness. Such a process might be particularly acute in species with strong sexual selection because the condition-dependence of male secondary sexual-traits might lead to striking phenotypic differences amongst males of different immune response levels. We tested whether there is selection on immune response by survival and reproduction in yearling and adult male black grouse (Lyrurus tetrix) following an immune challenge with a novel antigen and tested the hypothesis that sexual signals and body mass are honest signals of the immune response. We show that yearling males with highest immune response to these challenges had higher survival, but the reverse was true for adults. Adults with higher responses had highest mass loss and adult males with intermediate immune response had highest mating success. Tail length was related to baseline response in adults and more weakly in yearlings. Our findings reveal the complex fitness consequences of mounting an immune response across age classes. Such major differences in the direction and magnitude of selection in multiple fitness components is an alternative route underpinning the stabilizing selection of immune responses with an intermediate immune response being optimal
Jazzimprovisation pÄ elgitarr : Utveckling av solospel inom jazzgenren genom plankning, transkribering och analys
Denna studies utgÄngspunkt Àr hur musikalisk utveckling inom jazzimprovisation kan uppstÄ med plankning, transkribering och analys som praktiska metoder. Tidigare forskning och uppsatser har framfört kritik mot den akademiskt vedertagna och musikteoretiskt prÀglade metodik som uppstÄtt till en följd av institutionaliseringen av jazz och jazzimprovisation. Kritiken Äsyftar att undervisning inom jazzimprovisation distanserat sig frÄn genrens historia som prÀglades av att utveckla improvisatoriska förmÄgor genom imitation. Syftet med studien Àr att undersöka hur musikalisk utveckling inom jazzimprovisation pÄverkas av plankning, transkribering och analys. Metoden grundar sig i introspektiv analys av transkriberingar av tvÄ egna inspelningar och plankningar av tre tidigare gitarristers improvisationer över en och samma jazzstandard, samt reflektioner som förts i loggbok under studiens gÄng. Resultatet pÄvisar att tajming var den improvisatoriska bestÄndsdel som pÄverkats och utvecklats medan övriga bestÄndsdelar som rytmik, tonsprÄk och frasering visade marginella skillnader. Diskussionen tar upp resultatet i förhÄllande till tidigare forskning samt metodkritik och belyser noggrann tidsdisponering och planering som avgörande för ett mÀtbart resultat
"Det blir ju bÀttre undervisning pÄ plats..." : Distansundervisning i elgitarr pÄ gymnasieskolan
VaÌren 2020 staÌngdes Sveriges gymnasieskolor som en konsekvens av Covid-19 pandemin, och undervisningen foÌrlades till att bedrivas paÌ distans. Denna hastiga oÌvergaÌng innebar drastiska skillnader i foÌraÌndrade fysiska ramfaktorer foÌr laÌrare och elever. Distansundervisning aÌr som foÌreteelse inget nytt men aÌr ett relativt outforskat aÌmne inom undervisning av elgitarr. UtifraÌn ett sociokulturellt perspektiv undersoÌktes hur elgitarrlaÌrare vid gymnasieskolan upplevde att distansundervisningens foÌraÌndrade ramfaktorer paÌverkade undervisningen och elevernas laÌrande och motivation. Genom kvalitativa intervjuer visade resultatet att flertalet elevers laÌrande och motivation upplevdes paÌverkas negativt som foÌljd av bristen paÌ social interaktion. Undervisningen haÌmmades till viss del av tekniska begraÌnsningar daÌr minskade moÌjligheter till samspel beskrevs som den stoÌrsta nackdelen. Dock gav distansundervisningen och anvaÌndandet av digitala verktyg upphov till kreativitet hos vissa elever. Studiens resultat leder till en diskussion om hur laÌrande som en social aktivitet paÌverkas av foÌraÌndrade ramfaktorer, och hur distansundervisning i framtiden kan utvecklas genom forskning och nya teknologiska landvinningar. In the spring of 2020, Sweden's upper secondary schools were closed as a consequence of the Covid-19 pandemic, and teaching was resituated to distance education. This transition meant drastic differences in changing physical framework factors for teachers and students. Distance education is not a new phenomenon but lacks research regarding teaching of electric guitar. Through a socio-cultural perspective it was investigated how teachers at upper secondary schools, experienced teaching and the students learning and motivation related to the change of framework factors. Results of qualitative interviews showed that the majority of students learning and motivation was perceived to be negatively affected due to lack of social interaction. Teaching was partially hampered by technical limitations, where reduced opportunities for musical interplay was described as the greatest problem. However, distance learning and the use of digital tools gave rise to creativity in some students. The discussion addresses how learning as a social activity is affected by changing framework factors, and how distance education could develop through future research and technological advances.
Anomalidetektion i kreditkortstransaktioner med anvÀndning av Autoencoders
Money lost in credit card fraud reached approximately 27.85 billion dollars worldwide in 2018. Using machine learning and anomaly detection, fraud detection can be utilised with the goal of solving this major problem. This thesis investigates whether Autoencoders can be used for fraud detection in credit card transaction and if they outperform Random Forest models in terms of AUROC score. Three different models were created: Random Forest, vanilla Autoencoder and LSTM Autoencoder. All models were trained on two different datasets, where the first consisted of real-life data and the second of synthetic data. The LSTM Autoencoder was trained in two different ways on the second dataset. One where data was sorted by time and one where data was sorted by users. A third model was then created combining the two LSTM Autoencoder models. All models were evaluated using accuracy, recall and AUROC. AUROC was the primary metric. The Random Forest model outperform the Autoencoder models on both datasets in terms of AUROC. The AUROC scores were fairly similar on the real-life dataset for all models, with the Random Forest model having the highest AU- ROC score of 0.9258. For the synthethic dataset the Random Forest model got an AUROC score of 0.8508 whilst the Autoencoder models got much lower AUROC scores between 0.6447 and 0.7921. The Autoencoders created in this thesis can be used for anomaly detection in credit card transaction data, but does not necessarily perform well, depending on the data used.Under 2018 förlorades ungefÀr 27,85 miljarder dollar vÀrlden över i kreditkortsbedrÀgerier. Med hjÀlp av maskininlÀrning och anomalidetektion kan detektering av bedrÀgeri utföras med mÄlet att lösa detta problem. Detta examensarbete undersöker om Autoencoders kan anvÀndas för att upp- tÀcka bedrÀgerier i kreditkortstransaktioner och om de presterar bÀttre Àn Random Forest-modeller evaluerat med AUROC. Tre olika modeller skapades: Random Forest, vanilla Autoencoder och LSTM Autoencoder. Alla modeller trÀnades pÄ tvÄ olika dataset, det första Àr ett genuint dataset och det andra ett syntetiskt. LSTM Autoencoder trÀnades pÄ tvÄ olika varianter av det andra datasetet. Ett dÀr data sorterades efter tid och ett dÀr data sorterades efter anvÀndare. En tredje modell skapades sedan genom att kombinera de tvÄ LSTM Autoencoder-modellerna. Alla modeller utvÀrderades med hjÀlp av accuracy, recall och AUROC. AUROC var den primÀra metriken. Random Forest-modellen övertrÀffade Autoencoder-modellerna pÄ bÄda data- seten i AUROC-poÀng. AUROC-poÀngen var ganska lika pÄ det genuina data- setet för alla modeller, dÀr Random Forest-modellen fick den högsta AUROC- poÀngen pÄ 0,9258. För det syntetiska datasetet fick Random Forest-modellen en AUROC-poÀng pÄ 0,8508 medan Autoencoder-modellerna fick lÀgre AUROC- poÀng mellan 0,6447 och 0,7791. Autoencoder-modellerna som skapats i detta examensarbete kan anvÀndas för detektion av avvikelser i kreditkortstransaktioner, beroende pÄ vilken data som anvÀnds
"Det blir ju bÀttre undervisning pÄ plats..." : Distansundervisning i elgitarr pÄ gymnasieskolan
VaÌren 2020 staÌngdes Sveriges gymnasieskolor som en konsekvens av Covid-19 pandemin, och undervisningen foÌrlades till att bedrivas paÌ distans. Denna hastiga oÌvergaÌng innebar drastiska skillnader i foÌraÌndrade fysiska ramfaktorer foÌr laÌrare och elever. Distansundervisning aÌr som foÌreteelse inget nytt men aÌr ett relativt outforskat aÌmne inom undervisning av elgitarr. UtifraÌn ett sociokulturellt perspektiv undersoÌktes hur elgitarrlaÌrare vid gymnasieskolan upplevde att distansundervisningens foÌraÌndrade ramfaktorer paÌverkade undervisningen och elevernas laÌrande och motivation. Genom kvalitativa intervjuer visade resultatet att flertalet elevers laÌrande och motivation upplevdes paÌverkas negativt som foÌljd av bristen paÌ social interaktion. Undervisningen haÌmmades till viss del av tekniska begraÌnsningar daÌr minskade moÌjligheter till samspel beskrevs som den stoÌrsta nackdelen. Dock gav distansundervisningen och anvaÌndandet av digitala verktyg upphov till kreativitet hos vissa elever. Studiens resultat leder till en diskussion om hur laÌrande som en social aktivitet paÌverkas av foÌraÌndrade ramfaktorer, och hur distansundervisning i framtiden kan utvecklas genom forskning och nya teknologiska landvinningar. In the spring of 2020, Sweden's upper secondary schools were closed as a consequence of the Covid-19 pandemic, and teaching was resituated to distance education. This transition meant drastic differences in changing physical framework factors for teachers and students. Distance education is not a new phenomenon but lacks research regarding teaching of electric guitar. Through a socio-cultural perspective it was investigated how teachers at upper secondary schools, experienced teaching and the students learning and motivation related to the change of framework factors. Results of qualitative interviews showed that the majority of students learning and motivation was perceived to be negatively affected due to lack of social interaction. Teaching was partially hampered by technical limitations, where reduced opportunities for musical interplay was described as the greatest problem. However, distance learning and the use of digital tools gave rise to creativity in some students. The discussion addresses how learning as a social activity is affected by changing framework factors, and how distance education could develop through future research and technological advances.
Anomalidetektion i kreditkortstransaktioner med anvÀndning av Autoencoders
Money lost in credit card fraud reached approximately 27.85 billion dollars worldwide in 2018. Using machine learning and anomaly detection, fraud detection can be utilised with the goal of solving this major problem. This thesis investigates whether Autoencoders can be used for fraud detection in credit card transaction and if they outperform Random Forest models in terms of AUROC score. Three different models were created: Random Forest, vanilla Autoencoder and LSTM Autoencoder. All models were trained on two different datasets, where the first consisted of real-life data and the second of synthetic data. The LSTM Autoencoder was trained in two different ways on the second dataset. One where data was sorted by time and one where data was sorted by users. A third model was then created combining the two LSTM Autoencoder models. All models were evaluated using accuracy, recall and AUROC. AUROC was the primary metric. The Random Forest model outperform the Autoencoder models on both datasets in terms of AUROC. The AUROC scores were fairly similar on the real-life dataset for all models, with the Random Forest model having the highest AU- ROC score of 0.9258. For the synthethic dataset the Random Forest model got an AUROC score of 0.8508 whilst the Autoencoder models got much lower AUROC scores between 0.6447 and 0.7921. The Autoencoders created in this thesis can be used for anomaly detection in credit card transaction data, but does not necessarily perform well, depending on the data used.Under 2018 förlorades ungefÀr 27,85 miljarder dollar vÀrlden över i kreditkortsbedrÀgerier. Med hjÀlp av maskininlÀrning och anomalidetektion kan detektering av bedrÀgeri utföras med mÄlet att lösa detta problem. Detta examensarbete undersöker om Autoencoders kan anvÀndas för att upp- tÀcka bedrÀgerier i kreditkortstransaktioner och om de presterar bÀttre Àn Random Forest-modeller evaluerat med AUROC. Tre olika modeller skapades: Random Forest, vanilla Autoencoder och LSTM Autoencoder. Alla modeller trÀnades pÄ tvÄ olika dataset, det första Àr ett genuint dataset och det andra ett syntetiskt. LSTM Autoencoder trÀnades pÄ tvÄ olika varianter av det andra datasetet. Ett dÀr data sorterades efter tid och ett dÀr data sorterades efter anvÀndare. En tredje modell skapades sedan genom att kombinera de tvÄ LSTM Autoencoder-modellerna. Alla modeller utvÀrderades med hjÀlp av accuracy, recall och AUROC. AUROC var den primÀra metriken. Random Forest-modellen övertrÀffade Autoencoder-modellerna pÄ bÄda data- seten i AUROC-poÀng. AUROC-poÀngen var ganska lika pÄ det genuina data- setet för alla modeller, dÀr Random Forest-modellen fick den högsta AUROC- poÀngen pÄ 0,9258. För det syntetiska datasetet fick Random Forest-modellen en AUROC-poÀng pÄ 0,8508 medan Autoencoder-modellerna fick lÀgre AUROC- poÀng mellan 0,6447 och 0,7791. Autoencoder-modellerna som skapats i detta examensarbete kan anvÀndas för detektion av avvikelser i kreditkortstransaktioner, beroende pÄ vilken data som anvÀnds
Anomalidetektion i kreditkortstransaktioner med anvÀndning av Autoencoders
Money lost in credit card fraud reached approximately 27.85 billion dollars worldwide in 2018. Using machine learning and anomaly detection, fraud detection can be utilised with the goal of solving this major problem. This thesis investigates whether Autoencoders can be used for fraud detection in credit card transaction and if they outperform Random Forest models in terms of AUROC score. Three different models were created: Random Forest, vanilla Autoencoder and LSTM Autoencoder. All models were trained on two different datasets, where the first consisted of real-life data and the second of synthetic data. The LSTM Autoencoder was trained in two different ways on the second dataset. One where data was sorted by time and one where data was sorted by users. A third model was then created combining the two LSTM Autoencoder models. All models were evaluated using accuracy, recall and AUROC. AUROC was the primary metric. The Random Forest model outperform the Autoencoder models on both datasets in terms of AUROC. The AUROC scores were fairly similar on the real-life dataset for all models, with the Random Forest model having the highest AU- ROC score of 0.9258. For the synthethic dataset the Random Forest model got an AUROC score of 0.8508 whilst the Autoencoder models got much lower AUROC scores between 0.6447 and 0.7921. The Autoencoders created in this thesis can be used for anomaly detection in credit card transaction data, but does not necessarily perform well, depending on the data used.Under 2018 förlorades ungefÀr 27,85 miljarder dollar vÀrlden över i kreditkortsbedrÀgerier. Med hjÀlp av maskininlÀrning och anomalidetektion kan detektering av bedrÀgeri utföras med mÄlet att lösa detta problem. Detta examensarbete undersöker om Autoencoders kan anvÀndas för att upp- tÀcka bedrÀgerier i kreditkortstransaktioner och om de presterar bÀttre Àn Random Forest-modeller evaluerat med AUROC. Tre olika modeller skapades: Random Forest, vanilla Autoencoder och LSTM Autoencoder. Alla modeller trÀnades pÄ tvÄ olika dataset, det första Àr ett genuint dataset och det andra ett syntetiskt. LSTM Autoencoder trÀnades pÄ tvÄ olika varianter av det andra datasetet. Ett dÀr data sorterades efter tid och ett dÀr data sorterades efter anvÀndare. En tredje modell skapades sedan genom att kombinera de tvÄ LSTM Autoencoder-modellerna. Alla modeller utvÀrderades med hjÀlp av accuracy, recall och AUROC. AUROC var den primÀra metriken. Random Forest-modellen övertrÀffade Autoencoder-modellerna pÄ bÄda data- seten i AUROC-poÀng. AUROC-poÀngen var ganska lika pÄ det genuina data- setet för alla modeller, dÀr Random Forest-modellen fick den högsta AUROC- poÀngen pÄ 0,9258. För det syntetiska datasetet fick Random Forest-modellen en AUROC-poÀng pÄ 0,8508 medan Autoencoder-modellerna fick lÀgre AUROC- poÀng mellan 0,6447 och 0,7791. Autoencoder-modellerna som skapats i detta examensarbete kan anvÀndas för detektion av avvikelser i kreditkortstransaktioner, beroende pÄ vilken data som anvÀnds