713 research outputs found

    Dependences of the Casimir-Polder interaction between an atom and a cavity wall on atomic and material properties

    Full text link
    The Casimir-Polder and van der Waals interactions between an atom and a flat cavity wall are investigated under the influence of real conditions including the dynamic polarizability of the atom, actual conductivity of the wall material and nonzero temperature of the wall. The cases of different atoms near metal and dielectric walls are considered. It is shown that to obtain accurate results for the atom-wall interaction at short separations, one should use the complete tabulated optical data for the complex refractive index of the wall material and the accurate dynamic polarizability of an atom. At relatively large separations in the case of a metal wall, one may use the plasma model dielectric function to describe the dielectric properties of wall material. The obtained results are important for the theoretical interpretation of experiments on quantum reflection and Bose-Einstein condensation.Comment: 5 pages, 1 figure, iopart.cls is used, to appear in J. Phys. A (special issue: Proceedings of QFEXT05, Barcelona, Sept. 5-9, 2005

    Compliance of the L5-S1 spinal unit: a comparative study between an unconstrained and a partially constrained system

    Get PDF
    A comparison between an unconstrained and a partially constrained system for in vitro biomechanical testing of the L5-S1 spinal unit was conducted. The objective was to compare the compliance and the coupling of the L5-S1 unit measured with an unconstrained and a partially constrained test for the three major physiological motions of the human spine. Very few studies have compared unconstrained and partially constrained testing systems using the same cadaveric functional spinal units (FSUs). Seven human L5-S1 units were therefore tested on both a pneumatic, unconstrained, and a servohydraulic, partially constrained system. Each FSU was tested along three motions: flexion-extension (FE), lateral bending (LB) and axial rotation (AR). The obtained kinematics on both systems is not equivalent, except for the FE case, where both motions are similar. The directions of coupled motions were similar for both tests, but their magnitudes were smaller in the partially constrained configuration. The use of a partially constrained system to characterize LB and AR of the lumbosacral FSU decreased significantly the measured stiffness of the segment. The unconstrained system is today's "gold standard” for the characterization of FSUs. The selected partially constrained method seems also to be an appropriate way to characterize FSUs for specific applications. Care should be taken using the latter method when the coupled motions are importan

    Thermal quantum field theory and the Casimir interaction between dielectrics

    Full text link
    The Casimir and van der Waals interaction between two dissimilar thick dielectric plates is reconsidered on the basis of thermal quantum field theory in Matsubara formulation. We briefly review two main derivations of the Lifshitz formula in the framework of thermal quantum field theory without use of the fluctuation-dissipation theorem. A set of special conditions is formulated under which these derivations remain valid in the presence of dissipation. The low-temperature behavior of the Casimir and van der Waals interactions between dissimilar dielectrics is found analytically from the Lifshitz theory for both an idealized model of dilute dielectrics and for real dielectrics with finite static dielectric permittivities. The free energy, pressure and entropy of the Casimir and van der Waals interactions at low temperatures demonstrate the same universal dependence on the temperature as was previously discovered for ideal metals. The entropy vanishes when temperature goes to zero proving the validity of the Nernst heat theorem. This solves the long-standing problem on the consistency of the Lifshitz theory with thermodynamics in the case of dielectric plates. The obtained asymptotic expressions are compared with numerical computations for both dissimilar and similar real dielectrics and found to be in excellent agreement. The role of the zero-frequency term in Matsubara sum is investigated in the case of dielectric plates. It is shown that the inclusion of conductivity in the model of dielectric response leads to the violation of the Nernst heat theorem. The applications of this result to the topical problems of noncontact atomic friction and the Casimir interaction between real metals are discussed.Comment: 39 pages, 4 figures, to appear in Phys. Rev.

    Dependences of the van der Waals atom-wall interaction on atomic and material properties

    Full text link
    The 1%-accurate calculations of the van der Waals interaction between an atom and a cavity wall are performed in the separation region from 3 nm to 150 nm. The cases of metastable He{}^{\ast} and Na atoms near the metal, semiconductor or dielectric walls are considered. Different approximations to the description of wall material and atomic dynamic polarizability are carefully compared. The smooth transition to the Casimir-Polder interaction is verified. It is shown that to obtain accurate results for the atom-wall van der Waals interaction at shortest separations with an error less than 1% one should use the complete optical tabulated data for the complex refraction index of the wall material and the accurate dynamic polarizability of an atom. The obtained results may be useful for the theoretical interpretation of recent experiments on quantum reflection and Bose-Einstein condensation of ultracold atoms on or near surfaces of different nature.Comment: 14 pages, 5 figures, 3 tables, accepted for publication in Phys. Rev.

    Exact Casimir-Polder potential between a particle and an ideal metal cylindrical shell and the proximity force approximation

    Full text link
    We derive the exact Casimir-Polder potential for a polarizable microparticle inside an ideal metal cylindrical shell using the Green function method. The exact Casimir-Polder potential for a particle outside a shell, obtained recently by using the Hamiltonian approach, is rederived and confirmed. The exact quantum field theoretical result is compared with that obtained using the proximity force approximation and a very good agreement is demonstrated at separations below 0.1RR, where RR is the radius of the cylinder. The developed methods are applicable in the theory of topological defects.Comment: 8 pages, 4 figures, Accepted for publication in Eur. Phys. J.

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Implications For The Origin Of GRB 051103 From LIGO Observations

    Get PDF
    We present the results of a LIGO search for gravitational waves (GWs) associated with GRB 051103, a short-duration hard-spectrum gamma-ray burst (GRB) whose electromagnetically determined sky position is coincident with the spiral galaxy M81, which is 3.6 Mpc from Earth. Possible progenitors for short-hard GRBs include compact object mergers and soft gamma repeater (SGR) giant flares. A merger progenitor would produce a characteristic GW signal that should be detectable at the distance of M81, while GW emission from an SGR is not expected to be detectable at that distance. We found no evidence of a GW signal associated with GRB 051103. Assuming weakly beamed gamma-ray emission with a jet semi-angle of 30 deg we exclude a binary neutron star merger in M81 as the progenitor with a confidence of 98%. Neutron star-black hole mergers are excluded with > 99% confidence. If the event occurred in M81 our findings support the the hypothesis that GRB 051103 was due to an SGR giant flare, making it the most distant extragalactic magnetar observed to date.Comment: 8 pages, 3 figures. For a repository of data used in the publication, go to: https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=15166 . Also see the announcement for this paper on ligo.org at: http://www.ligo.org/science/Publication-GRB051103/index.ph

    Stacked Search for Gravitational Waves from the 2006 SGR 1900+14 Storm

    Get PDF
    We present the results of a LIGO search for short-duration gravitational waves (GWs) associated with the 2006 March 29 SGR 1900+14 storm. A new search method is used, "stacking'' the GW data around the times of individual soft-gamma bursts in the storm to enhance sensitivity for models in which multiple bursts are accompanied by GW emission. We assume that variation in the time difference between burst electromagnetic emission and potential burst GW emission is small relative to the GW signal duration, and we time-align GW excess power time-frequency tilings containing individual burst triggers to their corresponding electromagnetic emissions. We use two GW emission models in our search: a fluence-weighted model and a flat (unweighted) model for the most electromagnetically energetic bursts. We find no evidence of GWs associated with either model. Model-dependent GW strain, isotropic GW emission energy E_GW, and \gamma = E_GW / E_EM upper limits are estimated using a variety of assumed waveforms. The stacking method allows us to set the most stringent model-dependent limits on transient GW strain published to date. We find E_GW upper limit estimates (at a nominal distance of 10 kpc) of between 2x10^45 erg and 6x10^50 erg depending on waveform type. These limits are an order of magnitude lower than upper limits published previously for this storm and overlap with the range of electromagnetic energies emitted in SGR giant flares.Comment: 7 pages, 3 figure

    Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO's Fifth and Virgo's First Science Run

    Get PDF
    We summarize the sensitivity achieved by the LIGO and Virgo gravitational wave detectors for compact binary coalescence (CBC) searches during LIGO's fifth science run and Virgo's first science run. We present noise spectral density curves for each of the four detectors that operated during these science runs which are representative of the typical performance achieved by the detectors for CBC searches. These spectra are intended for release to the public as a summary of detector performance for CBC searches during these science runs.Comment: 12 pages, 5 figure

    Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts

    Full text link
    We outline the scientific motivation behind a search for gravitational waves associated with short gamma ray bursts detected by the InterPlanetary Network (IPN) during LIGO's fifth science run and Virgo's first science run. The IPN localisation of short gamma ray bursts is limited to extended error boxes of different shapes and sizes and a search on these error boxes poses a series of challenges for data analysis. We will discuss these challenges and outline the methods to optimise the search over these error boxes.Comment: Methods paper; Proceedings for Eduardo Amaldi 9 Conference on Gravitational Waves, July 2011, Cardiff, U
    corecore