145 research outputs found

    One-year, efficacy and safety open label study, with a single injection of a new hyaluronan for knee OA: the SOYA trial

    Get PDF
    [Abstract] Purpose. To assess the efficacy and safety of a single injection of a new formulation of hyaluronic acid (MPS-HA2%) in patients with symptomatic knee osteoarthritis after 12 months’ follow-up. Patients and Methods. Prospective, single-arm, multicentre, open-label, 12-month follow-up study. Patients with Kellgren–Lawrence (KL) 2–3 and visual analogue scale (VAS) pain scores of ≥40–< 80 mm received a single injection of MPS-HA2%. The primary outcome was the reduction in VAS pain scores from baseline, and the secondary outcomes were the Western Ontario and McMaster (WOMAC) Universities Osteoarthritis Index, the minimum clinically important improvement (MCII), and patient and investigator global assessments (PGA, IGA) measured on 5-point Likert scale. Adverse events were recorded throughout the study for safety purposes. Results. A total of 101 patients (mean age: 68 years; 74% female; and 78% overweight) were included. The mean reduction in pain at 12 months was 37.7%; the total WOMAC score improved by 36.5% and the pain, stiffness and physical function subscores returned improvements of 32.1%, 34.1% and 32.7%, respectively (p=0.0001 with respect to baseline). At 12 months, a statistically significant 62.2% of patients obtained an improvement equal to or greater than the MCII. The mean PGA score at baseline was 2.44 and 1.46 at 12 months (p<0.05), and the mean IGA scores at equivalent timepoints were 2.29 and 1.48 (p<0.05). Fourteen patients received a second injection at the 6-month follow-up visit. Eight patients reported a total of 12 treatment-related adverse events that were local, non-serious and of mild-to-moderate intensity. Conclusion. With just a single intra-articular injection, this not controlled trial suggests that MPS-HA2% is effective 12 months after the procedure in most cases. Patient tolerability and safety were both optimal (NCT03852914)

    Ultrasonographic and Histological Correlation after Experimental Reconstruction of a Volumetric Muscle Loss Injury with Adipose Tissue

    Get PDF
    Different types of scaffolds are used to reconstruct muscle volume loss injuries. In this experimental study, we correlated ultrasound observations with histological findings in a muscle volume loss injury reconstructed with autologous adipose tissue. The outcome is compared with decellularized and porous matrix implants. Autologous adipose tissue, decellularized matrix, and a porous collagen matrix were implanted in volumetric muscle loss (VML) injuries generated on the anterior tibial muscles of Wistar rats. Sixty days after implantation, ultrasound findings were compared with histological and histomorphometric analysis. The muscles with an autologous adipose tissue implant exhibited an ultrasound pattern that was quite similar to that of the regenerative control muscles. From a histological point of view, the defects had been occupied by newly formed muscle tissue with certain structural abnormalities that would explain the differences between the ultrasound patterns of the normal control muscles and the regenerated ones. While the decellularized muscle matrix implant resulted in fibrosis and an inflammatory response, the porous collagen matrix implant was replaced by regenerative muscle fibers with neurogenic atrophy and fibrosis. In both cases, the ultrasound images reflected echogenic, echotextural, and vascular changes compatible with the histological findings of failed muscle regeneration. The ultrasound analysis confirmed the histological findings observed in the VML injuries reconstructed by autologous adipose tissue implantation. Ultrasound can be a useful tool for evaluating the structure of muscles reconstructed through tissue engineering

    Ammonite stratigraphy of a Toarcian (Lower Jurassic) section on Nagy-Pisznice Hill (Gerecse Mts, Hungary)

    Get PDF
    Abstract In the Jurassic rocks exposed in a small abandoned quarry on the northwestern edge of Nagy-Pisznice Hill in the Gerecse Mts, fairly well preserved parts of a crocodile skeleton was found in 1996. The bed which yielded the skeletal remains is the uppermost layer of the Kisgerecse Marl Formation exposed here and was determined as belonging to the Upper Toarcian Grammoceras thouarsense Zone. The beds of the sequence above and below were carefully sampled in the late 1990s, and the encountered ammonites were evaluated biostratigraphically. As a result, the Lower Toarcian Harpoceras serpentinum Zone, the Middle Toarcian Hildoceras bifrons and Merlaites gradatus Zones, and the Upper Toarcian Grammoceras thouarsense and Geczyceras speciosum Zones were identified. Within most of these zones the subzones and even the faunal horizons were successfully recognized. The lowermost beds above the underlying Pliensbachian red limestone did not yield any fossils; thus the lowermost Toarcian Dactylioceras tenuicostatum Zone could not be documented. The highest Toarcian ammonite zones also remained unidentified, because the beds of the Tölgyhát Limestone above were not sampled all the way up. This paper presents the lithostratigraphic and biostratigraphic details of the sequence, and the paleontological descriptions of the most important ammonites

    Pep1, a Secreted Effector Protein of Ustilago maydis, Is Required for Successful Invasion of Plant Cells

    Get PDF
    The basidiomycete Ustilago maydis causes smut disease in maize. Colonization of the host plant is initiated by direct penetration of cuticle and cell wall of maize epidermis cells. The invading hyphae are surrounded by the plant plasma membrane and proliferate within the plant tissue. We identified a novel secreted protein, termed Pep1, that is essential for penetration. Disruption mutants of pep1 are not affected in saprophytic growth and develop normal infection structures. However, Δpep1 mutants arrest during penetration of the epidermal cell and elicit a strong plant defense response. Using Affymetrix maize arrays, we identified 116 plant genes which are differentially regulated in Δpep1 compared to wild type infections. Most of these genes are related to plant defense. By in vivo immunolocalization, live-cell imaging and plasmolysis approaches, we detected Pep1 in the apoplastic space as well as its accumulation at sites of cell-to-cell passages. Site-directed mutagenesis identified two of the four cysteine residues in Pep1 as essential for function, suggesting that the formation of disulfide bridges is crucial for proper protein folding. The barley covered smut fungus Ustilago hordei contains an ortholog of pep1 which is needed for penetration of barley and which is able to complement the U. maydis Δpep1 mutant. Based on these results, we conclude that Pep1 has a conserved function essential for establishing compatibility that is not restricted to the U. maydis / maize interaction

    A Novel Pathogenicity Gene Is Required in the Rice Blast Fungus to Suppress the Basal Defenses of the Host

    Get PDF
    For successful colonization and further reproduction in host plants, pathogens need to overcome the innate defenses of the plant. We demonstrate that a novel pathogenicity gene, DES1, in Magnaporthe oryzae regulates counter-defenses against host basal resistance. The DES1 gene was identified by screening for pathogenicity-defective mutants in a T-DNA insertional mutant library. Bioinformatic analysis revealed that this gene encodes a serine-rich protein that has unknown biochemical properties, and its homologs are strictly conserved in filamentous Ascomycetes. Targeted gene deletion of DES1 had no apparent effect on developmental morphogenesis, including vegetative growth, conidial germination, appressorium formation, and appressorium-mediated penetration. Conidial size of the mutant became smaller than that of the wild type, but the mutant displayed no defects on cell wall integrity. The Δdes1 mutant was hypersensitive to exogenous oxidative stress and the activity and transcription level of extracellular enzymes including peroxidases and laccases were severely decreased in the mutant. In addition, ferrous ion leakage was observed in the Δdes1 mutant. In the interaction with a susceptible rice cultivar, rice cells inoculated with the Δdes1 mutant exhibited strong defense responses accompanied by brown granules in primary infected cells, the accumulation of reactive oxygen species (ROS), the generation of autofluorescent materials, and PR gene induction in neighboring tissues. The Δdes1 mutant displayed a significant reduction in infectious hyphal extension, which caused a decrease in pathogenicity. Notably, the suppression of ROS generation by treatment with diphenyleneiodonium (DPI), an inhibitor of NADPH oxidases, resulted in a significant reduction in the defense responses in plant tissues challenged with the Δdes1 mutant. Furthermore, the Δdes1 mutant recovered its normal infectious growth in DPI-treated plant tissues. These results suggest that DES1 functions as a novel pathogenicity gene that regulates the activity of fungal proteins, compromising ROS-mediated plant defense

    Tranilast increases vasodilator response to acetylcholine in rat mesenteric resistance arteries through increased EDHF participation

    Full text link
    Background and Purpose: Tranilast, in addition to its capacity to inhibit mast cell degranulation, has other biological effects, including inhibition of reactive oxygen species, cytokines, leukotrienes and prostaglandin release. In the current study, we analyzed whether tranilast could alter endothelial function in rat mesenteric resistance arteries (MRA). Experimental Approach: Acetylcholine-induced relaxation was analyzed in MRA (untreated and 1-hour tranilast treatment) from 6 month-old Wistar rats. To assess the possible participation of endothelial nitric oxide or prostanoids, acetylcholineinduced relaxation was analyzed in the presence of L-NAME or indomethacin. The participation of endothelium-derived hyperpolarizing factor (EDHF) in acetylcholine-induced response was analyzed by preincubation with TRAM-34 plus apamin or by precontraction with a high K+ solution. Nitric oxide (NO) and superoxide anion levels were measured, as well as vasomotor responses to NO donor DEA-NO and to large conductance calcium-activated potassium channel opener NS1619. Key Results: Acetylcholine-induced relaxation was greater in tranilast-incubated MRA. Acetylcholine-induced vasodilation was decreased by L-NAME in a similar manner in both experimental groups. Indomethacin did not modify vasodilation. Preincubation with a high K+ solution or TRAM-34 plus apamin reduced the vasodilation to ACh more markedly in tranilastincubated segments. NO and superoxide anion production, and vasodilator responses to DEA-NO or NS1619 remained unmodified in the presence of tranilast. Conclusions and Implications: Tranilast increased the endothelium-dependent relaxation to acetylcholine in rat MRA. This effect is independent of the nitric oxide and cyclooxygenase pathways but involves EDHF, and is mediated by an increased role of small conductance calcium-activated K+ channelsThis study was supported by Ministerio de Ciencia e Innovación (SAF 2009-10374), Ministerio de Economía y Competitividad (SAF 2012-38530), and Fundación Mapfre. F.E. Xavier is recipient of research fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazil

    MoVam7, a Conserved SNARE Involved in Vacuole Assembly, Is Required for Growth, Endocytosis, ROS Accumulation, and Pathogenesis of Magnaporthe oryzae

    Get PDF
    Soluble NSF attachment protein receptor (SNARE) proteins play a central role in membrane fusion and vesicle transport of eukaryotic organisms including fungi. We previously identified MoSce22 as a homolog of Saccharomyces cerevisiae SNARE protein Sec22 to be involved in growth, stress resistance, and pathogenicity of Magnaporthe oryzae. Here, we provide evidences that MoVam7, an ortholog of S. cerevisiae SNARE protein Vam7, exerts conserved functions in vacuolar morphogenesis and functions in pathogenicity of M. oryzae. Staining with neutral red and FM4-64 revealed the presence of abnormal fragmented vacuoles and an absence of the Spitzenkörper body in the ΔMovam7 mutant. The ΔMovam7 mutant also exhibited reduced vegetative growth, poor conidiation, and failure to produce the infection structure appressorium. Additionally, treatments with cell wall perturbing agents indicated weakened cell walls and altered distributions of the cell wall component chitin. Furthermore, the ΔMovam7 mutant showed a reduced accumulation of reactive oxygen species (ROS) in the hyphal apex and failed to cause diseases on the rice plant. In summary, our studies indicate that MoVam7, like MoSec22, is a component of the SNARE complex whose functions in vacuole assembly also underlies the growth, conidiation, appressorium formation, and pathogenicity of M. oryzae. Further studies of MoVam7, MoSec22, and additional members of the SNARE complex are likely to reveal critical mechanisms in vacuole formation and membrane trafficking that is linked to fungal pathogenicity

    Concentration Endurance Test (d2): Normative data for Spanish-speaking pediatric population

    Get PDF
    OBJECTIVE: To generate normative data for the Concentration Endurance Test (d2) in Spanish-speaking pediatric populations. METHOD: The sample consisted of 4,373 healthy children from nine countries in Latin America (Chile, Cuba, Ecuador, Guatemala, Honduras, Mexico, Paraguay, Peru, and Puerto Rico) and Spain. Each participant was administered the d2 test as part of a larger neuropsychological battery. The Total number of items processed (TN), Total number of correct responses (CR), Total performance (TP), and Concentration performance (CP) scores were normed using multiple linear regressions and standard deviations of residual values. Age, age2, sex, and mean level of parental education (MLPE) were included as predictors in the analyses. RESULTS: The final multiple linear regression models showed main effects for age on all scores, such that scores increased linearly as a function of age. TN scores were affected by age2 for Guatemala and Puerto Rico; CR scores were affected by age2 for Mexico; TP scores were affected by age2 for Chile, Mexico, Puerto Rico, and Spain; and CP scores for Mexico and Spain. Models indicated that children whose parents had a MLPE >12 years obtained higher scores compared to children whose parents had a MLPE≤12 years for Mexico and Spain in all scores, and Puerto Rico for TN, CR, and TP, and Guatemala and Paraguay for CP scores. Sex affect the scores for Ecuador and Honduras (CP scores). CONCLUSIONS: This is the largest Spanish-speaking pediatric normative study in the world, and it will allow neuropsychologists from these countries to have a more accurate approach to interpret the d2 test in pediatric populations

    Retromer Is Essential for Autophagy-Dependent Plant Infection by the Rice Blast Fungus

    Get PDF
    We thank Dr. Yizhen Deng at the Temasek Life sciences Laboratory (TLL) for providing the RFP-MoAtg8 plasmid. We would like to thank Drs. Zhenbiao Yang (University of California, Riverside) and Xianying Dou (Fujian Agriculture and Forestry University) for helpful discussions.Author Summary The rice blast fungus Magnaporthe oryzae utilizes key infection structures, called appressoria, elaborated at the tips of the conidial germ tubes to gain entry into the host tissue. Development of the appressorium is accompanied with autophagy in the conidium leading to programmed cell death. This work highlights the significance of the Vps35/retromer membrane-trafficking machinery in the regulation of autophagy during appressorium-mediated host penetration, and thus sheds light on a novel molecular mechanism underlying autophagy-based membrane trafficking events during pathogen-host interaction in rice blast disease. Our findings provide the first genetic evidence that the retromer controls the initiation of autophagy in filamentous fungi.Yeshttp://www.plosgenetics.org/static/editorial#pee
    corecore