67 research outputs found

    From Space to Eye Lens: Monitoring protected sites with Earth Observation: Combining field data with CASI and Sentinel imagery

    Get PDF
    This report details work undertaken, led by Manchester Metropolitan University in collaboration with Natural England. The aim of this research was to investigate the potential of Earth observation (EO) data to contribute towards the monitoring of protected sites at the landscape scale, to understand resilience, and to map natural capital assets. This was achieved through the integration of field vegetation survey data with Sentinel-2 and CASI imagery to map ecosystem attributes, particularly ecological gradients and species and plant communities. Two contrasting areas in the north-west of England were used as case studies: Ainsdale National Nature Reserve (NNR) sand dunes and the Forest of Bowland blanket bog. Based on the outcomes of this research, a number of recommendations for future study and implementation have been outlined

    Engineering restoration and gaseous carbon uptake on a degraded bog: the role of Eriophorum angustifolium and micropropagated Sphagnum

    Get PDF
    Degraded peatlands are significant sources of carbon greenhouse gases (CGHG), and their recovery can make significant contributions to climate change mitigation as well as deliver biodiversity benefits. Sphagnum mosses are key species for northern peatland formation and re-introduction is often needed for successful ecohydrological restoration of degraded bogs, but natural sources are scarce and often protected. Micropropagated Sphagnum moss products (BeadaMoss®) were developed to alleviate this constraint. This research explored in detail, for the first time, the CGHG fluxes on a cut-over lowland peatland restoration site where micropropagated Sphagnum was introduced to an existing ‘nurse crop’ of Eriophorum angustifolium, and tested the influence of vegetation maturity. Ecosystem CGHG flux was measured using closed chambers at plot scale in areas of both mature and immature E. angustifolium with and without application of BeadaGel™ Sphagnum, with control plots on bare peat. Studies were conducted over two years of contrasting weather patterns. In Year 1, mean net (CO2e) CGHG uptake on vegetated plots was -2.33 (minimum 1.55, maximum -5.55) t ha-1 yr-1 with increasing CGHG uptake as vegetation matured. In Year 2, gross photosynthesis reduced significantly during the 2018 summer drought resulting in a small mean net CGHG emission of 0.11 (minimum 2.21 maximum -1.22) t ha-1 yr-1 . Sphagnum application within immature vegetation resulted in greater CGHG uptake in both years, but was not as beneficial within mature vegetation. CGHG emission from bare peat (3.79 t ha-1 yr-1 overall) showed the magnitude of avoided losses. Methane flux contributed significantly to CGHG emission but was not closely related to water table depth. Application of Sphagnum within E. angustifolium can deliver good CGHG flux results in the early stages of degraded lowland bog recovery but cannot fully mitigate vulnerability to climate change scenarios

    Can on-site management mitigate nitrogen deposition impacts in non-wooded habitats?

    Get PDF
    Nitrogen (N) deposition is a major cause of plant biodiversity loss, with serious implications for appropriate management of protected sites. Reducing N emissions is the only long-term solution. However, on-site management has the potential to mitigate some of the adverse effects of N deposition. In this paper we review how management activities such as grazing, cutting, burning, hydrological management and soil disturbance measures can mitigate the negative impacts of N across a range of temperate habitats (acid, calcareous and neutral grasslands, sand dunes and other coastal habitats, heathlands, bogs and fens). The review focuses mainly on European habitats, which have a long history of N deposition, and it excludes forested systems. For each management type we distinguish between actions that improve habitat suitability for plant species of conservation importance, and actions that immobilize N or remove it from the system. For grasslands and heathlands we collate data on the quantity of N removal by each management type. Our findings show that while most activities improve habitat suitability, the majority do little to slow or to reduce the amount of N accumulating in soil pools at current deposition rates. Only heavy cutting/mowing with removal in grasslands, high intensity burns in heathlands and sod cutting remove more N than comes in from deposition under typical management cycles. We conclude by discussing some of the unintended consequences of managing specifically for N impacts, which can include damage to non-target species, alteration of soil processes, loss of the seedbank and loss of soil carbon

    Impact of simulated nitrogen pollution on heathland microfauna, mesofauna and plants

    Get PDF
    Deposition of reactive nitrogen derived from intensive agriculture and industrial processes is a major threat to biodiversity and ecosystem services around the world; however our knowledge of the impacts of nitrogen is restricted to a very limited range of organisms. Here we examine the response of groups of microfauna (testate amoebae), mesofauna (enchytraeid worms) and plants to ammonium nitrate application in the Ruabon heathland long-term experiment. Plant data showed significant differences between treatments, particularly characterised by a loss of bryophytes in nitrogen-treated plots, by contrast enchytraeids showed a non-significant increase in abundance in response to treatment. Testate amoebae showed no significant changes in abundance or inferred biomass but significant changes in community structure with a reduced abundance of Corythion dubium, interpreted as a response to the loss of bryophytes. Our results suggest that simple indices of plant community may have value for bioindication while the bioindication value of testate amoebae and enchytraeids is not clearly demonstrated

    Bacterial and Fungal Communities in a Degraded Ombrotrophic Peatland Undergoing Natural and Managed Re-Vegetation

    Get PDF
    The UK hosts 15–19% of global upland ombrotrophic (rain fed) peatlands that are estimated to store 3.2 billion tonnes of carbon and represent a critical upland habitat with regard to biodiversity and ecosystem services provision. Net production is dependent on an imbalance between growth of peat-forming Sphagnum mosses and microbial decomposition by microorganisms that are limited by cold, acidic, and anaerobic conditions. In the Southern Pennines, land-use change, drainage, and over 200 years of anthropogenic N and heavy metal deposition have contributed to severe peatland degradation manifested as a loss of vegetation leaving bare peat susceptible to erosion and deep gullying. A restoration programme designed to regain peat hydrology, stability and functionality has involved re-vegetation through nurse grass, dwarf shrub and Sphagnum re-introduction. Our aim was to characterise bacterial and fungal communities, via high-throughput rRNA gene sequencing, in the surface acrotelm/mesotelm of degraded bare peat, long-term stable vegetated peat, and natural and managed restorations. Compared to long-term vegetated areas the bare peat microbiome had significantly higher levels of oligotrophic marker phyla (Acidobacteria, Verrucomicrobia, TM6) and lower Bacteroidetes and Actinobacteria, together with much higher ligninolytic Basidiomycota. Fewer distinct microbial sequences and significantly fewer cultivable microbes were detected in bare peat compared to other areas. Microbial community structure was linked to restoration activity and correlated with soil edaphic variables (e.g. moisture and heavy metals). Although rapid community changes were evident following restoration activity, restored bare peat did not approach a similar microbial community structure to non-eroded areas even after 25 years, which may be related to the stabilisation of historic deposited heavy metals pollution in long-term stable areas. These primary findings are discussed in relation to bare peat oligotrophy, re-vegetation recalcitrance, rhizosphere-microbe-soil interactions, C, N and P cycling, trajectory of restoration, and ecosystem service implications for peatland restoration

    Nitrogen Deposition Reduces Plant Diversity and Alters Ecosystem Functioning: Field-Scale Evidence from a Nationwide Survey of UK Heathlands

    Get PDF
    Findings from nitrogen (N) manipulation studies have provided strong evidence of the detrimental impacts of elevated N deposition on the structure and functioning of heathland ecosystems. Few studies, however, have sought to establish whether experimentally observed responses are also apparent under natural, field conditions. This paper presents the findings of a nationwide field-scale evaluation of British heathlands, across broad geographical, climatic and pollution gradients. Fifty two heathlands were selected across an N deposition gradient of 5.9 to 32.4 kg ha−1 yr−1. The diversity and abundance of higher and lower plants and a suite of biogeochemical measures were evaluated in relation to climate and N deposition indices. Plant species richness declined with increasing temperature and N deposition, and the abundance of nitrophilous species increased with increasing N. Relationships were broadly similar between upland and lowland sites, with the biggest reductions in species number associated with increasing N inputs at the low end of the deposition range. Both oxidised and reduced forms of N were associated with species declines, although reduced N appears to be a stronger driver of species loss at the functional group level. Plant and soil biochemical indices were related to temperature, rainfall and N deposition. Litter C:N ratios and enzyme (phenol-oxidase and phosphomonoesterase) activities had the strongest relationships with site N inputs and appear to represent reliable field indicators of N deposition. This study provides strong, field-scale evidence of links between N deposition - in both oxidised and reduced forms - and widespread changes in the composition, diversity and functioning of British heathlands. The similarity of relationships between upland and lowland environments, across broad spatial and climatic gradients, highlights the ubiquity of relationships with N, and suggests that N deposition is contributing to biodiversity loss and changes in ecosystem functioning across European heathlands
    • …
    corecore