15 research outputs found

    The Zwicky Transient Facility Census of the Local Universe. I. Systematic Search for Calcium-rich Gap Transients Reveals Three Related Spectroscopic Subclasses

    Get PDF
    Using the Zwicky Transient Facility alert stream, we are conducting a large spectroscopic campaign to construct a complete, volume-limited sample of transients brighter than 20 mag, and coincident within 100" of galaxies in the Census of the Local Universe catalog. We describe the experiment design and spectroscopic completeness from the first 16 months of operations, which have classified 754 supernovae. We present results from a systematic search for calcium-rich gap transients in the sample of 22 low-luminosity (peak absolute magnitude M > −17), hydrogen-poor events found in the experiment. We report the detection of eight new events, and constrain their volumetric rate to ≳ 15% ± 5% of the SN Ia rate. Combining this sample with 10 previously known events, we find a likely continuum of spectroscopic properties ranging from events with SN Ia–like features (Ca-Ia objects) to those with SN Ib/c–like features (Ca-Ib/c objects) at peak light. Within the Ca-Ib/c events, we find two populations distinguished by their red (g − r ≈ 1.5 mag) or green (g - r ≈ 0.5 mag) colors at the r-band peak, wherein redder events show strong line blanketing features and slower light curves (similar to Ca-Ia objects), weaker He lines, and lower [Ca ii]/[O i] in the nebular phase. We find that all together the spectroscopic continuum, volumetric rates, and striking old environments are consistent with the explosive burning of He shells on low-mass white dwarfs. We suggest that Ca-Ia and red Ca-Ib/c objects arise from the double detonation of He shells, while green Ca-Ib/c objects are consistent with low-efficiency burning scenarios like detonations in low-density shells or deflagrations

    Early Ultraviolet Observations of Type IIn Supernovae Constrain the Asphericity of Their Circumstellar Material

    Get PDF
    We present a survey of the early evolution of 12 Type IIn supernovae (SNe IIn) at ultraviolet and visible light wavelengths. We use this survey to constrain the geometry of the circumstellar material (CSM) surrounding SN IIn explosions, which may shed light on their progenitor diversity. In order to distinguish between aspherical and spherical CSM, we estimate the blackbody radius temporal evolution of the SNe IIn of our sample, following the method introduced by Soumagnac et al. We find that higher-luminosity objects tend to show evidence for aspherical CSM. Depending on whether this correlation is due to physical reasons or to some selection bias, we derive a lower limit between 35% and 66% for the fraction of SNe IIn showing evidence for aspherical CSM. This result suggests that asphericity of the CSM surrounding SNe IIn is common—consistent with data from resolved images of stars undergoing considerable mass loss. It should be taken into account for more realistic modeling of these events

    Stability, structural and functional properties of a monomeric, calcium-loaded adenylate cyclase toxin, CyaA, from Bordetella pertussis.

    No full text
    International audienceBordetella pertussis, the causative agent of whooping cough, secretes an adenylate cyclase toxin, CyaA, which invades eukaryotic cells and alters their physiology by cAMP overproduction. Calcium is an essential cofactor of CyaA, as it is the case for most members of the Repeat-in-ToXins (RTX) family. We show that the calcium-bound, monomeric form of CyaA, hCyaAm, conserves its permeabilization and haemolytic activities, even in a fully calcium-free environment. In contrast, hCyaAm requires sub-millimolar calcium in solution for cell invasion, indicating that free calcium in solution is involved in the CyaA toxin translocation process. We further report the first in solution structural characterization of hCyaAm, as deduced from SAXS, mass spectrometry and hydrodynamic studies. We show that hCyaAm adopts a compact and stable state that can transiently conserve its conformation even in a fully calcium-free environment. Our results therefore suggest that in hCyaAm, the C-terminal RTX-domain is stabilized in a high-affinity calcium-binding state by the N-terminal domains while, conversely, calcium binding to the C-terminal RTX-domain strongly stabilizes the N-terminal regions. Hence, the different regions of hCyaAm appear tightly connected, leading to stabilization effects between domains. The hysteretic behaviour of CyaA in response to calcium is likely shared by other RTX cytolysins

    Translocation and calmodulin-activation of the adenylate cyclase toxin (CyaA) of Bordetella pertussis

    No full text
    International audienceThe adenylate cyclase toxin (CyaA) is a multi-domain protein secreted by Bordetella pertussis, the causative agent of whooping cough. CyaA is involved in the early stages of respiratory tract colonization by Bordetella pertussis. CyaA is produced and acylated in the bacteria, and secreted via a dedicated secretion system. The cell intoxication process involves a unique mechanism of transport of the CyaA toxin catalytic domain (ACD) across the plasma membrane of eukaryotic cells. Once translocated, ACD binds to and is activated by calmodulin and produces high amounts of cAMP, subverting the physiology of eukaryotic cells. Here, we review our work on the identification and characterization of a critical region of CyaA, the translocation region, required to deliver ACD into the cytosol of target cells. The translocation region contains a segment that exhibits membrane-active properties, i.e. is able to fold upon membrane interaction and permeabilize lipid bilayers. We proposed that this region is required to locally destabilize the membrane, decreasing the energy required for ACD translocation. To further study the translocation process, we developed a tethered bilayer lipid membrane (tBLM) design that recapitulate the ACD transport across a membrane separating two hermetic compartments. We showed that ACD translocation is critically dependent on calcium, membrane potential, CyaA acylation and on the presence of calmodulin in the trans compartment. Finally, we describe how calmodulin-binding triggers key conformational changes in ACD, leading to its activation and production of supraphysiological concentrations of cAMP

    Calcium-dependent disorder-to-order transitions are central to the secretion and folding of the CyaA toxin of Bordetella pertussis, the causative agent of whooping cough

    No full text
    International audienceThe adenylate cyclase toxin (CyaA) plays an essential role in the early stages of respiratory tract colonization by Bordetella pertussis, the causative agent of whooping cough. Once secreted, CyaA invades eukaryotic cells, leading to cell death. The cell intoxication process involves a unique mechanism of translocation of the CyaA catalytic domain directly across the plasma membrane of the target cell. Herein, we review our recent results describing how calcium is involved in several steps of this intoxication process. In conditions mimicking the low calcium environment of the crowded bacterial cytosol, we show that the C-terminal, calcium-binding Repeat-in-ToXin (RTX) domain of CyaA, RD, is an extended, intrinsically disordered polypeptide chain with a significant level of local, secondary structure elements, appropriately sized for transport through the narrow channel of the secretion system. Upon secretion, the high calcium concentration in the extracellular milieu induces the refolding of RD, which likely acts as a scaffold to favor the refolding of the upstream domains of the full-length protein. Due to the presence of hydrophobic regions, CyaA is prone to aggregate into multimeric forms in vitro, in the absence of a chaotropic agent. We have recently defined the experimental conditions required for CyaA folding, comprising both calcium binding and molecular confinement. These parameters are critical for CyaA folding into a stable, monomeric and functional form. The monomeric, calcium-loaded (holo) toxin exhibits efficient liposome permeabilization and hemolytic activities in vitro, even in a fully calcium-free environment. By contrast, the toxin requires sub-millimolar calcium concentrations in solution to translocate its catalytic domain across the plasma membrane, indicating that free calcium in solution is actively involved in the CyaA toxin translocation process. Overall, this data demonstrates the remarkable adaptation of bacterial RTX toxins to the diversity of calcium concentrations it is exposed to in the successive environments encountered in the course of the intoxication process

    Calcium, Acylation, and Molecular Confinement Favor Folding of Bordetella pertussis Adenylate Cyclase CyaA Toxin into a Monomeric and Cytotoxic Form

    No full text
    International audienceThe adenylate cyclase (CyaA) toxin, a multidomain protein of 1706 amino acids, is one of the major virulence factors produced by Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic target cells in which it produces high levels of cAMP, thus altering the cellular physiology. Although CyaA has been extensively studied by various cellular and molecular approaches, the structural and functional states of the toxin remain poorly characterized. Indeed, CyaA is a large protein and exhibits a pronounced hydrophobic character, making it prone to aggregation into multimeric forms. As a result, CyaA has usually been extracted and stored in denaturing conditions. Here, we define the experimental conditions allowing CyaA folding into a monomeric and functional species. We found that CyaA forms mainly multimers when refolded by dialysis, dilution, or buffer exchange. However, a significant fraction of monomeric, folded protein could be obtained by exploiting molecular confinement on size exclusion chromatography. Folding of CyaA into a monomeric form was found to be critically dependent upon the presence of calcium and post-translational acylation of the protein. We further show that the monomeric preparation displayed hemolytic and cytotoxic activities suggesting that the monomer is the genuine, physiologically active form of the toxin. We hypothesize that the structural role of the post-translational acylation in CyaA folding may apply to other RTX toxins

    Governance strategy and costs : board compensation in Sweden

    Get PDF
    Shareholders are not identical, but differ in their objectives and actions. One difference is the level of delegation of the principal functions to the board, which we suggest can be observed through the level of directors’ compensation. We analyze the difference in board compensation through the concept of governance strategy and suggest two distinct categories of shareholder strategies: the company governance strategy and the financial governance strategy. These strategies create different distributions of governance costs, which we separate into principal costs and agency costs. We claim that the financial governance strategy adopts a higher level of delegation, which implies that the principal costs are assumed by the corporation and that agency costs are higher. This in turn can explain the higher compensation for the directors of the board compared to compensation under the company governance strategy. We test our hypothesis using a three-year panel of Swedish listed corporations and find that shareholders pursuing a financial governance strategy are associated with higher levels of board compensation. These findings suggest the existence of differences in governance strategies, reflected in governance costs through board compensation, among different types of shareholders in a corporation
    corecore