209 research outputs found

    Phenotypic differentiation among native, expansive and introduced populations influences invasion success

    Full text link
    Aim: Humans influence species distributions by modifying the environment and by dispersing species beyond their natural ranges. Populations of species that have established in disjunct regions of the world may exhibit trait differentiation from native populations due to founder effects and adaptations to selection pressures in each distributional region. We compared multiple native, expansive and introduced populations of a single species across the world, considering the influence of environmental stressors and transgenerational effects. Location: United States Gulf and Atlantic coasts, United States interior, European Atlantic and Mediterranean coasts, east coast of Australia. Taxon: Baccharis halimifolia L. (eastern baccharis). Methods: We monitored seed germination, seedling emergence, survival and early growth in a common garden experiment, conducted with over 18,200 seeds from 80 populations. We also evaluated the influence of environmental stress and maternal traits on progeny performance. Results: Introduced European Atlantic populations had faster germination and early growth than native populations. However, this was not the case for the more recently naturalized European Mediterranean populations. Introduced Australian populations grew faster than native populations in non-saline environments but had lower survival in saline conditions commonly encountered in the native range. Similarly, expansive inland US populations germinated faster than coastal native populations in non-saline environments but grew and germinated more slowly in saline environments. Maternal inflorescence and plant size were positively related with seed germination and seedling survival, whereas flower abundance was positively correlated with seedling early growth and survival. However, maternal traits explained a much lower fraction of the total variation in early demographic stages of B. halimifolia than did distributional range. Main conclusions: Phenotypic differentiation could allow B. halimifolia to adapt to different biotic and abiotic selection pressures found in each distributional range, potentially contributing to its success in introduced and expansive ranges

    Crystal Structure of a Complex of DNA with One AT-Hook of HMGA1

    Get PDF
    We present here for the first time the crystal structure of an AT-hook domain. We show the structure of an AT-hook of the ubiquitous nuclear protein HMGA1, combined with the oligonucleotide d(CGAATTAATTCG)2, which has two potential AATT interacting groups. Interaction with only one of them is found. The structure presents analogies and significant differences with previous NMR studies: the AT-hook forms hydrogen bonds between main-chain NH groups and thymines in the minor groove, DNA is bent and the minor groove is widened

    Brane-World Gravity

    Get PDF
    The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+\textit{d}-dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the \textit{d} extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (\sim TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall--Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at \emph{low} energies -- the 5-dimensional Dvali--Gabadadze--Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.Comment: A major update of Living Reviews in Relativity 7:7 (2004) "Brane-World Gravity", 119 pages, 28 figures, the update contains new material on RS perturbations, including full numerical solutions of gravitational waves and scalar perturbations, on DGP models, and also on 6D models. A published version in Living Reviews in Relativit

    Search for CP violation in D+→ϕπ+ and D+s→K0Sπ+ decays

    Get PDF
    A search for CP violation in D + → ϕπ + decays is performed using data collected in 2011 by the LHCb experiment corresponding to an integrated luminosity of 1.0 fb−1 at a centre of mass energy of 7 TeV. The CP -violating asymmetry is measured to be (−0.04 ± 0.14 ± 0.14)% for candidates with K − K + mass within 20 MeV/c 2 of the ϕ meson mass. A search for a CP -violating asymmetry that varies across the ϕ mass region of the D + → K − K + π + Dalitz plot is also performed, and no evidence for CP violation is found. In addition, the CP asymmetry in the D+s→K0Sπ+ decay is measured to be (0.61 ± 0.83 ± 0.14)%
    corecore