28 research outputs found

    Heatwaves and fire in Pantanal: Historical and future perspectives from CORDEX-CORE

    Get PDF
    The Pantanal biome, at the confluence of Brazil, Bolivia and Paraguay, is the largest continental wetland on the planet and an invaluable reserve of biodiversity. The exceptional 2020 fire season in Pantanal drew particular attention due to the severe wildfires and the catastrophic natural and socio-economic impacts witnessed within the biome. So far, little progress has been made in order to better understand the influence of climate extremes on fire occurrence in Pantanal. Here, we evaluate how extreme hot conditions, through heatwave events, are related to the occurrence and the exacerbation of fires in this region. A historical analysis using a statistical regression model found that heatwaves during the dry season explained 82% of the interannual variability of burned area during the fire season. In a future perspective, an ensemble of CORDEX-CORE simulations assuming different Representative Concentration Pathways (RCP2.6 and RCP8.5), reveal a significant increasing trend in heatwave occurrence over Pantanal. Compared to historical levels, the RCP2.6 scenario leads to more than a doubling in the Pantanal heatwave incidence during the dry season by the second half of the 21st century, followed by a plateauing. Alternatively, RCP8.5 projects a steady increase of heatwave incidence until the end of the century, pointing to a very severe scenario in which heatwave conditions would be observed nearly over all the Pantanal area and during practically all the days of the dry season. Accordingly, favorable conditions for fire spread and consequent large burned areas are expected to occur more often in the future, posing a dramatic short-term threat to the ecosystem if no preservation action is undertaken

    Modelling Climate Change Impacts on Tropical Dry Forest Fauna

    Get PDF
    Tropical dry forests are among the most threatened ecosystems in the world, and those occurring in the insular Caribbean are particularly vulnerable. Climate change represents a significant threat for the Caribbean region and for small islands like Jamaica. Using the Hellshire Hills protected area in Jamaica, a simple model was developed to project future abundance of arthropods and lizards based on current sensitivities to climate variables derived from rainfall and temperature records. The abundances of 20 modelled taxa were predicted more often by rainfall variables than temperature, but both were found to have strong impacts on arthropod and lizard abundance. Most taxa were projected to decrease in abundance by the end of the century under drier and warmer conditions. Where an increase in abundance was projected under a low emissions scenario, this change was reduced or reversed under a high emissions climate change scenario. The validation process showed that, even for a small population, there was reasonable skill in predicting its annual variability. Results of this study show that this simple model can be used to identify the vulnerability of similar sites to the effects of shifting climate and, by extension, their conservation needs

    Evaluation of DSSAT-MANIHOT-Cassava model to determine potential irrigation benefits for cassava in Jamaica

    Get PDF
    Cassava (Manihot esculenta Crantz) is an important food crop, especially in developing countries, because of its resilience and ability to grow in conditions generally inhospitable for other crops. However, tropical crops like cassava are not as frequently modeled compared with crops from temperate locations. The objective of this research was to calibrate the CSM-MANIHOT-Cassava model of the Decision Support System for Agrotechnology Transfer, DSSAT beta v4.8 and use the model to evaluate the potential benefits of irrigation on yield. We established two field trials with two water treatments (rainfed and irrigated) and four cultivars that had not been studied previously. We simulated in-season biomass and end-of-season yield, evaluating the model performance with different statistical measures. There was good agreement between simulated and measured values; the best results showed a deviation of 9.7%, normalized RMSE of 18%, and d-index of 0.98 for biomass, with corresponding values of 11, 24, and 0.98, respectively, for yield. Good simulations of yield correlated with accurate simulations for leaf area index and harvest index. The varieties showed differential responses to irrigation, suggesting that there are diverse levels of drought tolerance even within the same environmental condition

    Projected changes in temperature and precipitation over the United States, Central America and the Caribbean in CMIP6 GCMs

    Get PDF
    The Coupled Model Intercomparison Project Phase 6 (CMIP6) dataset is used to examine projected changes in temperature and precipitation over the United States (U.S.), Central America and the Caribbean. The changes are computed using an ensemble of 31 models for three future time slices (2021–2040, 2041–2060, and 2080–2099) relative to the reference period (1995–2014) under three Shared Socioeconomic Pathways (SSPs; SSP1-2.6, SSP2-4.5, and SSP5-8.5). The CMIP6 ensemble reproduces the observed annual cycle and distribution of mean annual temperature and precipitation with biases between − 0.93 and 1.27 °C and − 37.90 to 58.45%, respectively, for most of the region. However, modeled precipitation is too large over the western and Midwestern U.S. during winter and spring and over the North American monsoon region in summer, while too small over southern Central America. Temperature is projected to increase over the entire domain under all three SSPs, by as much as 6 °C under SSP5-8.5, and with more pronounced increases in the northern latitudes over the regions that receive snow in the present climate. Annual precipitation projections for the end of the twenty-frst century have more uncertainty, as expected, and exhibit a meridional dipole-like pattern, with precipitation increasing by 10–30% over much of the U.S. and decreasing by 10–40% over Central America and the Caribbean, especially over the monsoon region. Seasonally, precipitation over the eastern and central subregions is projected to increase during winter and spring and decrease during summer and autumn. Over the monsoon region and Central America, precipitation is projected to decrease in all seasons except autumn. The analysis was repeated on a subset of 9 models with the best performance in the reference period; however, no signifcant diference was found, suggesting that model bias is not strongly infuencing the projections.Universidad de Costa Rica/[805-B9-454]/UCR/Costa RicaNational Science Foundation/[AGS-1849654]/NSF/Estados UnidosNational Science Foundation/[AGS-1623912]/NSF/Estados UnidosDepartment of Energy/[2316‐T849‐08]/DOE/Estados UnidosNational Oceanic and Atmospheric Administration/[2316‐T849‐08]/NOAA/Estados UnidosUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones Geofísicas (CIGEFI)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencias del Mar y Limnología (CIMAR

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Characterization of Future Caribbean Rainfall and Temperature Extremes across Rainfall Zones

    No full text
    End-of-century changes in Caribbean climate extremes are derived from the Providing Regional Climate for Impact Studies (PRECIS) regional climate model (RCM) under the A2 and B2 emission scenarios across five rainfall zones. Trends in rainfall, maximum temperature, and minimum temperature extremes from the RCM are validated against meteorological stations over 1979–1989. The model displays greater skill at representing trends in consecutive wet days (CWD) and extreme rainfall (R95P) than consecutive dry days (CDD), wet days (R10), and maximum 5-day precipitation (RX5). Trends in warm nights, cool days, and warm days were generally well reproduced. Projections for 2071–2099 relative to 1961–1989 are obtained from the ECHAM5 driven RCM. Northern and eastern zones are projected to experience more intense rainfall under A2 and B2. There is less consensus across scenarios with respect to changes in the dry and wet spell lengths. However, there is indication that a drying trend may be manifest over zone 5 (Trinidad and northern Guyana). Changes in the extreme temperature indices generally suggest a warmer Caribbean towards the end of century across both scenarios with the strongest changes over zone 4 (eastern Caribbean)

    Generating Projections for the Caribbean at 1.5, 2.0 and 2.5 °C from a High-Resolution Ensemble

    No full text
    Six members of the Hadley Centre’s Perturbed Physics Ensemble for the Quantifying Uncertainty in Model Predictions (QUMP) project are downscaled using the PRECIS (Providing Regional Climates for Impact Studies) RCM (Regional Climate Model). Climate scenarios at long-term temperature goals (LTTGs) of 1.5, 2.0, and 2.5 °C above pre-industrial warming levels are generated for the Caribbean and six sub-regions for annual and seasonal timescales. Under a high emissions scenario, the LTTGs are attained in the mid-2020s, end of the 2030s, and the early 2050s, respectively. At 1.5 °C, the region is slightly cooler than the globe, land areas warmer than ocean, and for the later months, the north is warmer than the south. The far western and southern Caribbean including the eastern Caribbean island chain dry at 1.5 °C (up to 50%). At 2.0 °C, the warming and drying intensify and there is a reversal of a wet tendency in parts of the north Caribbean. Drying in the rainfall season accounts for much of the annual change. There is limited further intensification of the region-wide drying at 2.5 °C. Changes in wind strength in the Caribbean low-level jet region may contribute to the patterns seen. There are implications for urgent and targeted adaptation planning in the Caribbean
    corecore