1,176 research outputs found

    Tidal evolution of close-in giant planets : Evidence of Type II migration?

    Full text link
    It is well accepted that 'hot Jupiters' did not form in situ, as the temperature in the protoplanetary disc at the radius at which they now orbit would have been too high for planet formation to have occurred. These planets, instead, form at larger radii and then move into the region in which they now orbit. The exact process that leads to the formation of these close-in planets is, however, unclear and it seems that there may be more than one mechanism that can produce these short-period systems. Dynamical interactions in multiple-planet systems can scatter planets into highly eccentric orbits which, if the pericentre is sufficiently close to the parent star, can be tidally circularised by tidal interactions between the planet and star. Furthermore, systems with distant planetary or stellar companions can undergo Kozai cycles which can result in a planet orbiting very close to its parent star. However, the most developed model for the origin of short period planets is one in which the planet exchanges angular momentum with the surrounding protoplanetary disc and spirals in towards the central star. In the case of 'hot Jupiters', the planet is expected to open a gap in the disc and migrate through Type II .migration. If this is the dominant mechanism for producing `hot Jupiters' then we would expect the currect properties of observed close-in giant planets to be consistent with an initial population resulting from Type II migration followed by evolution due to tidal interactions with the central star. We consider initial distributions that are consistent with Type II migration and find that after tidal evolution, the final distributions can be consistent with that observed. Our results suggest that a modest initial pile-up at a ~ 0.05 au is required and that the initial eccentricity distribution must peak at e \sim 0.Comment: 10 pages, 15 figures, accepted for publication in Monthly Notices of the Royal Astronomical Societ

    WASP-43b: The closest-orbiting hot Jupiter

    Full text link
    We report the discovery of WASP-43b, a hot Jupiter transiting a K7V star every 0.81 d. At 0.6-Msun the host star has the lowest mass of any star hosting a hot Jupiter. It also shows a 15.6-d rotation period. The planet has a mass of 1.8 Mjup, a radius of 0.9 Rjup, and with a semi-major axis of only 0.014 AU has the smallest orbital distance of any known hot Jupiter. The discovery of such a planet around a K7V star shows that planets with apparently short remaining lifetimes owing to tidal decay of the orbit are also found around stars with deep convection zones.Comment: 4 page

    WASP-23b: a transiting hot Jupiter around a K dwarf and its Rossiter-McLaughlin effect

    Full text link
    We report the discovery of a new transiting planet in the Southern Hemisphere. It has been found by the WASP-south transit survey and confirmed photometrically and spectroscopically by the 1.2m Swiss Euler telescope, LCOGT 2m Faulkes South Telescope, the 60 cm TRAPPIST telescope and the ESO 3.6m telescope. The orbital period of the planet is 2.94 days. We find it is a gas giant with a mass of 0.88 \pm 0.10 Mj and a radius estimated at 0.96 \pm 0.05 Rj . We have also obtained spectra during transit with the HARPS spectrograph and detect the Rossiter-McLaughlin effect despite its small amplitude. Because of the low signal to noise of the effect and of a small impact parameter we cannot place a constraint on the projected spin-orbit angle. We find two confiicting values for the stellar rotation. Our determination, via spectral line broadening gives v sin I = 2.2 \pm 0.3 km/s, while another method, based on the activity level using the index log R'HK, gives an equatorial rotation velocity of only v = 1.35 \pm 0.20 km/s. Using these as priors in our analysis, the planet could either be misaligned or aligned. This should send strong warnings regarding the use of such priors. There is no evidence for eccentricity nor of any radial velocity drift with time.Comment: 13 pages, 8 figures, 7 tables, accepted for publication in A&

    Rossiter-McLaughlin Effect Measurements for WASP-16, WASP-25 and WASP-31

    Full text link
    We present new measurements of the Rossiter-McLaughlin (RM) effect for three WASP planetary systems, WASP-16, WASP-25 and WASP-31, from a combined analysis of their complete sets of photometric and spectroscopic data. We find a low amplitude RM effect for WASP-16 (Teff = 5700 \pm 150K), suggesting that the star is a slow rotator and thus of an advanced age, and obtain a projected alignment angle of lambda = -4.2 degrees +11.0 -13.9. For WASP-25 (Teff = 5750\pm100K) we detect a projected spin-orbit angle of lambda = 14.6 degrees \pm6.7. WASP-31 (Teff = 6300\pm100K) is found to be well-aligned, with a projected spin-orbit angle of lambda = 2.8degrees \pm3.1. A circular orbit is consistent with the data for all three systems, in agreement with their respective discovery papers. We consider the results for these systems in the context of the ensemble of RM measurements made to date. We find that whilst WASP-16 fits the hypothesis of Winn et al. (2010) that 'cool' stars (Teff < 6250K) are preferentially aligned, WASP-31 has little impact on the proposed trend. We bring the total distribution of the true spin-orbit alignment angle, psi, up to date, noting that recent results have improved the agreement with the theory of Fabrycky & Tremaine (2007) at mid-range angles. We also suggest a new test for judging misalignment using the Bayesian Information Criterion, according to which WASP-25 b's orbit should be considered to be aligned.Comment: 20 pages, 14 tables, 10 figures. Accepted to MNRA

    Nuclear Disks of Gas and Dust in Early Type Galaxies and the Hunt for Massive Black Holes: Hubble Space Telescope Observations of NGC 6251

    Get PDF
    We discuss Hubble Space Telescope optical images and spectra of NGC 6251, a giant E2 galaxy and powerful radio source at a distance of 106 Mpc (for H_0 = 70 km/s/Mpc). The galaxy is known to host a very well defined dust disk (O'Neil et al. 1994); the exceptional resolution of our V and I images allows a detailed study of the disk structure. Furthermore, narrow band images centered on the Halpha+[NII] emission lines, reveal the presence of ionized gas in the inner 0.3 arcsec of the disk. We used the HST/Faint Object Spectrograph with the 0.09 arcsec aperture to study the velocity structure of the disk. Dynamical models were constructed for two extreme (in terms of central concentration) analytical representations of the stellar surface brightness profile, from which the mass density and corresponding rotational velocity are derived assuming a constant mass-to-light ratio (M/L)_V ~ 8.5 M_solar/L_solar. For both representations of the stellar component, the models show that the gas is in Keplerian motion around a central mass ~ 4 - 8 X 10^8 solar masses, and that the contribution of radial flows to the velocity field is negligible.Comment: 45 pages, submitted to Ap

    WASP-42 b and WASP-49 b: two new transiting sub-Jupiters

    Full text link
    We report the discovery of two new transiting planets from the WASP survey. WASP-42 b is a 0.500 +/- 0.035 M_jup planet orbiting a K1 star at a separation of 0.0548 +/- 0.0017 AU with a period of 4.9816872 +/- 7.3 x 10^-6 days. The radius of WASP-42 b is 1.080 +/- 0.057 R_jup while its equilibrium temperature is T_eq = 995 +/- 34 K. We detect some evidence for a small but non-zero eccentricity of e=0.060 +/- 0.013. WASP-49 b is a 0.378 +/- 0.027 M_jup planet around an old G6 star. It has a period of 2.7817387 +/- 5.6 x 10^-6 days and a separation of 0.0379 +/- 0.0011 AU. This planet is slightly bloated, having a radius of 1.115 +/- 0.047 R_jup and an equilibrium temperature of T_eq = 1369 +/- 39 K. Both planets have been followed up photometrically, and in total we have obtained 5 full and one partial transit light curves of WASP-42 and 4 full and one partial light curves of WASP-49 using the Euler-Swiss, TRAPPIST and Faulkes South telescopes

    Discovery and characterization of WASP-6b, an inflated sub-Jupiter mass planet transiting a solar-type star

    Get PDF
    We report the discovery of WASP-6b, an inflated sub-Jupiter mass planet transiting every 3.3610060^{\rm + 0.0000022 }_ days a mildly metal-poor solar-type star of magnitude V = 11.9. A combined analysis of the WASP photometry, high-precision followup transit photometry and radial velocities yield a planetary mass M_{\rm p} = 0.503^_ MJM_{\rm J} and radius R_{\rm p} = 1.224^_ RJR_{\rm J}, resulting in a density ρp=0.27±0.05\rho_{\rm p} = 0.27 \pm 0.05 ρJ\rho_{\rm J}. The mass and radius for the host star are M_\ast = 0.88^_ MM_\odot and R_\ast = 0.870^_ RR_\odot. The non-zero orbital eccentricity e = 0.054^{\rm +0.018}_ that we measure suggests that the planet underwent a massive tidal heating ~1 Gyr ago that could have contributed to its inflated radius. High-precision radial velocities obtained during a transit allow us to measure a sky-projected angle between the stellar spin and orbital axis \beta = 11^_ deg. In addition to similar published measurements, this result favors a dominant migration mechanism based on tidal interactions with a protoplanetary disk

    Thermal emission from WASP-24b at 3.6 and 4.5 {\mu}m

    Get PDF
    Aims. We observe occultations of WASP-24b to measure brightness temperatures and to determine whether or not its atmosphere exhibits a thermal inversion (stratosphere). Methods. We observed occultations of WASP-24b at 3.6 and 4.5 {\mu}m using the Spitzer Space Telescope. It has been suggested that there is a correlation between stellar activity and the presence of inversions, so we analysed existing HARPS spectra in order to calculate log R'HK for WASP-24 and thus determine whether or not the star is chromospherically active. We also observed a transit of WASP-24b in the Str\"{o}mgren u and y bands, with the CAHA 2.2-m telescope. Results. We measure occultation depths of 0.159 \pm 0.013 per cent at 3.6 {\mu}m and 0.202 \pm 0.018 per cent at 4.5 {\mu}m. The corresponding planetary brightness temperatures are 1974 \pm 71 K and 1944 \pm 85 K respectively. Atmosphere models with and without a thermal inversion fit the data equally well; we are unable to constrain the presence of an inversion without additional occultation measurements in the near-IR. We find log R'HK = -4.98 \pm 0.12, indicating that WASP-24 is not a chromospherically active star. Our global analysis of new and previously-published data has refined the system parameters, and we find no evidence that the orbit of WASP-24b is non-circular. Conclusions. These results emphasise the importance of complementing Spitzer measurements with observations at shorter wavelengths to gain a full understanding of hot Jupiter atmospheres.Comment: 7 pages, 4 figures, 3 tables. Accepted for publication in A&

    Qatar-1b: a hot Jupiter orbiting a metal-rich K dwarf star

    Full text link
    We report the discovery and initial characterisation of Qatar-1b, a hot Jupiter orbiting a metal-rich K dwarf star, the first planet discovered by the Alsubai Project exoplanet transit survey. We describe the strategy used to select candidate transiting planets from photometry generated by the Alsubai Project instrument. We examine the rate of astrophysical and other false positives found during the spectroscopic reconnaissance of the initial batch of candidates. A simultaneous fit to the follow-up radial velocities and photometry of Qatar-1b yield a planetary mass of 1.09+/-0.08 Mjup and a radius of 1.16+/-0.05 Rjup. The orbital period and separation are 1.420033 days and 0.0234 AU for an orbit assumed to be circular. The stellar density, effective temperature and rotation rate indicate an age greater than 4 Gyr for the system.Comment: 8 pages, 5 figures, submitted to Monthly Notices of the Royal Astronomical Societ
    corecore