We present new measurements of the Rossiter-McLaughlin (RM) effect for three
WASP planetary systems, WASP-16, WASP-25 and WASP-31, from a combined analysis
of their complete sets of photometric and spectroscopic data. We find a low
amplitude RM effect for WASP-16 (Teff = 5700 \pm 150K), suggesting that the
star is a slow rotator and thus of an advanced age, and obtain a projected
alignment angle of lambda = -4.2 degrees +11.0 -13.9. For WASP-25 (Teff =
5750\pm100K) we detect a projected spin-orbit angle of lambda = 14.6 degrees
\pm6.7. WASP-31 (Teff = 6300\pm100K) is found to be well-aligned, with a
projected spin-orbit angle of lambda = 2.8degrees \pm3.1. A circular orbit is
consistent with the data for all three systems, in agreement with their
respective discovery papers. We consider the results for these systems in the
context of the ensemble of RM measurements made to date. We find that whilst
WASP-16 fits the hypothesis of Winn et al. (2010) that 'cool' stars (Teff <
6250K) are preferentially aligned, WASP-31 has little impact on the proposed
trend. We bring the total distribution of the true spin-orbit alignment angle,
psi, up to date, noting that recent results have improved the agreement with
the theory of Fabrycky & Tremaine (2007) at mid-range angles. We also suggest a
new test for judging misalignment using the Bayesian Information Criterion,
according to which WASP-25 b's orbit should be considered to be aligned.Comment: 20 pages, 14 tables, 10 figures. Accepted to MNRA