397 research outputs found

    Rational design of a polyurethane foam

    Get PDF
    Polyurethane (PU) foams are exceptionally versatile due to the nature of PU bond formation and the large variety of polymeric backbones and formulation components such as catalysts and surfactants. This versatility introduces a challenge, namely a near unlimited number of variables for formulating foams. In addition to this, PU foam development requires expert knowledge, not only in polyurethane chemistry but also in the art of evaluating the resulting foams. In this work, we demonstrate that a rational experimental design framework in conjunction with a design of experiments (DoE) approach reduces both the number of experiments required to understand the formulation space and reduces the need for tacit knowledge from a PU expert. We focus on an in-depth example where a catalyst and two surfactants of a known formulation are set as factors and foam physical properties are set as responses. An iterative DoE approach is used to generate a set of foams with substantially different cell morphology and hydrodynamic behaviour. We demonstrate that with 23 screening formulations and 16 final formulations, foam physical properties can be modelled from catalyst and surfactant loadings. This approach also allows for the exploration of relationships between the cell morphology of PU foam and its hydrodynamic behaviour

    Helioseismology of Sunspots: A Case Study of NOAA Region 9787

    Get PDF
    Various methods of helioseismology are used to study the subsurface properties of the sunspot in NOAA Active Region 9787. This sunspot was chosen because it is axisymmetric, shows little evolution during 20-28 January 2002, and was observed continuously by the MDI/SOHO instrument. (...) Wave travel times and mode frequencies are affected by the sunspot. In most cases, wave packets that propagate through the sunspot have reduced travel times. At short travel distances, however, the sign of the travel-time shifts appears to depend sensitively on how the data are processed and, in particular, on filtering in frequency-wavenumber space. We carry out two linear inversions for wave speed: one using travel-times and phase-speed filters and the other one using mode frequencies from ring analysis. These two inversions give subsurface wave-speed profiles with opposite signs and different amplitudes. (...) From this study of AR9787, we conclude that we are currently unable to provide a unified description of the subsurface structure and dynamics of the sunspot.Comment: 28 pages, 18 figure

    Modeling the Subsurface Structure of Sunspots

    Get PDF
    While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this paper, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out an helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by \citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic

    Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results

    Get PDF
    The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review

    WASP-14b: 7.3 M-J transiting planet in an eccentric orbit

    Get PDF
    We report the discovery of a 7.3 M-J exoplanet WASP-14b, one of the most massive transiting exoplanets observed to date. The planet orbits the 10th-magnitude F5V star USNO-B1 11118-0262485 with a period of 2.243 752 d and orbital eccentricity e = 0.09. A simultaneous fit of the transit light curve and radial velocity measurements yields a planetary mass of 7.3 +/- 0.5 M-J and a radius of 1.28 +/- 0.08 R-J. This leads to a mean density of about 4.6 g cm(-3) making it the densest transiting exoplanets yet found at an orbital period less than 3 d. We estimate this system to be at a distance of 160 +/- 20 pc. Spectral analysis of the host star reveals a temperature of 6475 +/- 100 K, log g = 4.07 cm s(-2) and v sin i = 4.9 +/- 1.0 km s(-1), and also a high lithium abundance, log N(Li) = 2.84 +/- 0.05. The stellar density, effective temperature and rotation rate suggest an age for the system of about 0.5-1.0 Gyr

    From the Shell-shocked Soldier to the Nervous Child: Psychoanalysis in the Aftermath of the First World War

    Get PDF
    This article investigates the development of child analysis in Britain between the wars, as the anxious child succeeded the shell-shocked soldier as a focus of psychoanalytic enquiry. Historians of psychoanalysis tend to regard the Second World War as a key moment in the discovery of the ‘war within’ the child, but it was in the aftermath of the First War that the warring psyche of the child was observed and elaborated. The personal experience of war and its aftermath, and the attention given to regression in the treatment of war neuroses, encouraged Melanie Klein, Anna Freud and others to turn their attention to children. At the same time, however, the impact of the First World War as a traumatic event, with inter-generational consequences, remained largely unaccounted for within psychoanalysis as Klein and others focused on the child's riven internal world

    Guidelines for the management of pregnancy in women with cystic fibrosis

    Get PDF
    Women with cystic fibrosis (CF) now regularly survive into their reproductive years in good health and wish to have a baby. Many pregnancies have been reported in the literature and it is clear that whilst the outcome for the baby is generally good and some mothers do very well, others find either their CF complicates the pregnancy or is adversely affected by the pregnancy. For some, pregnancy may only become possible after transplantation. Optimal treatment of all aspects of CF needs to be maintained from the preconceptual period until after the baby is born. Clinicians must be prepared to modify their treatment to accommodate the changing physiology during pregnancy and to be aware of changing prescribing before conception, during pregnancy, after birth and during breast feeding. This supplement offers consensus guidelines based on review of the literature and experience of paediatricians, adult and transplant physicians, and nurses, physiotherapists, dietitians, pharmacists and psychologists experienced in CF and anaesthetist and obstetricians with experience of CF pregnancy. It is hoped they will provide practical guidelines helpful to the multidisciplinary CF teams caring for pregnant women with CF

    The Sudbury Neutrino Observatory

    Full text link
    The Sudbury Neutrino Observatory is a second generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D2O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and epsf style files. For additional information about SNO see http://www.sno.phy.queensu.ca . This version has some new reference
    corecore