62 research outputs found

    Identification of Zoonotic Genotypes of Giardia duodenalis

    Get PDF
    Giardia duodenalis, originally regarded as a commensal organism, is the etiologic agent of giardiasis, a gastrointestinal disease of humans and animals. Giardiasis causes major public and veterinary health concerns worldwide. Transmission is either direct, through the faecal-oral route, or indirect, through ingestion of contaminated water or food. Genetic characterization of G. duodenalis isolates has revealed the existence of seven groups (assemblages A to G) which differ in their host distribution. Assemblages A and B are found in humans and in many other mammals, but the role of animals in the epidemiology of human infection is still unclear, despite the fact that the zoonotic potential of Giardia was recognised by the WHO some 30 years ago. Here, we performed an extensive genetic characterization of 978 human and 1440 animal isolates, which together comprise 3886 sequences from 4 genetic loci. The data were assembled into a molecular epidemiological database developed by a European network of public and veterinary health Institutions. Genotyping was performed at different levels of resolution (single and multiple loci on the same dataset). The zoonotic potential of both assemblages A and B is evident when studied at the level of assemblages, sub-assemblages, and even at each single locus. However, when genotypes are defined using a multi-locus sequence typing scheme, only 2 multi-locus genotypes (MLG) of assemblage A and none of assemblage B appear to have a zoonotic potential. Surprisingly, mixtures of genotypes in individual isolates were repeatedly observed. Possible explanations are the uptake of genetically different Giardia cysts by a host, or subsequent infection of an already infected host, likely without overt symptoms, with a different Giardia species, which may cause disease. Other explanations for mixed genotypes, particularly for assemblage B, are substantial allelic sequence heterogeneity and/or genetic recombination. Although the zoonotic potential of G. duodenalis is evident, evidence on the contribution and frequency is (still) lacking. This newly developed molecular database has the potential to tackle intricate epidemiological questions concerning protozoan diseases

    Multilocus Genotyping of Human Giardia Isolates Suggests Limited Zoonotic Transmission and Association between Assemblage B and Flatulence in Children

    Get PDF
    Giardia intestinalis is a protozoan parasite found world-wide and it is a major cause of diarrhea in humans and other mammals. The genetic variability within G. intestinalis is high with eight distinct genotypes or assemblages (A-H). Here we performed sequence-based multilocus genotyping of around 200 human Giardia isolates. We found evidence of limited zoonotic transmission of certain A subtypes and an association between flatulence and assemblage B infection in children. This shows that it is important to investigate different assemblages and sub-assemblages of G. intestinalis in human infections in order to understand the clinical significance, zoonotic potential, sequence divergence, and transmission pathways of this parasite

    Public health risks associated with food‐borne parasites

    Get PDF
    Parasites are important food-borne pathogens. Their complex lifecycles, varied transmission routes, and prolonged periods between infection and symptoms mean that the public health burden and relative importance of different transmission routes are often difficult to assess. Furthermore, there are challenges in detection and diagnostics, and variations in reporting. A Europe-focused ranking exercise, using multicriteria decision analysis, identified potentially food-borne parasites of importance, and that are currently not routinely controlled in food. These are Cryptosporidium spp., Toxoplasma gondii and Echinococcus spp. Infection with these parasites in humans and animals, or their occurrence in food, is not notifiable in all Member States. This Opinion reviews current methods for detection, identification and tracing of these parasites in relevant foods, reviews literature on food-borne pathways, examines information on their occurrence and persistence in foods, and investigates possible control measures along the food chain. The differences between these three parasites are substantial, but for all there is a paucity of well-established, standardised, validated methods that can be applied across the range of relevant foods. Furthermore, the prolonged period between infection and clinical symptoms (from several days for Cryptosporidium to years for Echinococcus spp.) means that source attribution studies are very difficult. Nevertheless, our knowledge of the domestic animal lifecycle (involving dogs and livestock) for Echinoccocus granulosus means that this parasite is controllable. For Echinococcus multilocularis, for which the lifecycle involves wildlife (foxes and rodents), control would be expensive and complicated, but could be achieved in targeted areas with sufficient commitment and resources. Quantitative risk assessments have been described for Toxoplasma in meat. However, for T.gondii and Cryptosporidium as faecal contaminants, development of validated detection methods, including survival/infectivity assays and consensus molecular typing protocols, are required for the development of quantitative risk assessments and efficient control measures

    Cryptosporidium parvum, a potential cause of colic adenocarcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cryptosporidiosis represents a major public health problem. This infection has been reported worldwide as a frequent cause of diarrhoea. Particularly, it remains a clinically significant opportunistic infection among immunocompromised patients, causing potentially life-threatening diarrhoea in HIV-infected persons. However, the understanding about different aspects of this infection such as invasion, transmission and pathogenesis is problematic. Additionally, it has been difficult to find suitable animal models for propagation of this parasite. Efforts are needed to develop reproducible animal models allowing both the routine passage of different species and approaching unclear aspects of <it>Cryptosporidium </it>infection, especially in the pathophysiology field.</p> <p>Results</p> <p>We developed a model using adult severe combined immunodeficiency (SCID) mice inoculated with <it>Cryptosporidium parvum </it>or <it>Cryptosporidium muris </it>while treated or not with Dexamethasone (Dex) in order to investigate divergences in prepatent period, oocyst shedding or clinical and histopathological manifestations. <it>C. muris</it>-infected mice showed high levels of oocysts excretion, whatever the chemical immunosuppression status. Pre-patent periods were 11 days and 9.7 days in average in Dex treated and untreated mice, respectively. Parasite infection was restricted to the stomach, and had a clear preferential colonization for fundic area in both groups. Among <it>C. parvum</it>-infected mice, Dex-treated SCID mice became chronic shedders with a prepatent period of 6.2 days in average. <it>C. parvum</it>-inoculated mice treated with Dex developed glandular cystic polyps with areas of intraepithelial neoplasia, and also with the presence of intramucosal adenocarcinoma.</p> <p>Conclusion</p> <p>For the first time <it>C. parvum </it>is associated with the formation of polyps and adenocarcinoma lesions in the gut of Dex-treated SCID mice. Additionally, we have developed a model to compare chronic <it>muris </it>and <it>parvum </it>cryptosporidiosis using SCID mice treated with corticoids. This reproducible model has facilitated the evaluation of clinical signs, oocyst shedding, location of the infection, pathogenicity, and histopathological changes in the gastrointestinal tract, indicating divergent effects of Dex according to <it>Cryptosporidium </it>species causing infection.</p

    The COMPARE Data Hubs

    Get PDF
    Data sharing enables research communities to exchange findings and build upon the knowledge that arises from their discoveries. Areas of public and animal health as well as food safety would benefit from rapid data sharing when it comes to emergencies. However, ethical, regulatory and institutional challenges, as well as lack of suitable platforms which provide an infrastructure for data sharing in structured formats, often lead to data not being shared or at most shared in form of supplementary materials in journal publications. Here, we describe an informatics platform that includes workflows for structured data storage, managing and pre-publication sharing of pathogen sequencing data and its analysis interpretations with relevant stakeholders

    The prevalence of Giardia infection in dogs and cats, a systematic review and meta-analysis of prevalence studies from stool samples

    Get PDF
    Giardia has a wide range of host species and is a common cause of diarrhoeal disease in humans and animals. Companion animals are able to transmit a range of zoonotic diseases to their owners including giardiasis, but the size of this risk is not well known. The aim of this study was to analyse giardiasis prevalence rates in dogs and cats worldwide using a systematic search approach. Meta-analysis enabled to describe associations between Giardia prevalence and various confounding factors. Pooled prevalence rates were 15.2% (95% CI 13.8-16.7%) for dogs and 12% (95% CI 9.2-15.3%) for cats. However, there was very high heterogeneity between studies. Meta-regression showed that the diagnostic method used had a major impact on reported prevalence with studies using ELISA, IFA and PCR reporting prevalence rates between 2.6 and 3.7 times greater than studies using microscopy. Conditional negative binomial regression found that symptomatic animals had higher prevalence rates ratios (PRR) than asymptomatic animals 1.61 (95% CI 1.33-1.94) in dogs and 1.94 (95% CI 1.47-2.56) in cats. Giardia was much more prevalent in young animals. For cats >6 months, PRR=0.47 (0.42-0.53) and in dogs of the same age group PRR=0.36 (0.32-0.41). Additionally, dogs kept as pets were less likely to be positive (PRR=0.56 (0.41-0.77)) but any difference in cats was not significant. Faecal excretion of Giardia is common in dogs and slightly less so in cats. However, the exact rates depend on the diagnostic method used, the age and origin of the animal. What risk such endemic colonisation poses to human health is still unclear as it will depend not only on prevalence rates but also on what assemblages are excreted and how people interact with their pets

    Draft Genome Sequencing of Giardia intestinalis Assemblage B Isolate GS: Is Human Giardiasis Caused by Two Different Species?

    Get PDF
    Giardia intestinalis is a major cause of diarrheal disease worldwide and two major Giardia genotypes, assemblages A and B, infect humans. The genome of assemblage A parasite WB was recently sequenced, and the structurally compact 11.7 Mbp genome contains simplified basic cellular machineries and metabolism. We here performed 454 sequencing to 16× coverage of the assemblage B isolate GS, the only Giardia isolate successfully used to experimentally infect animals and humans. The two genomes show 77% nucleotide and 78% amino-acid identity in protein coding regions. Comparative analysis identified 28 unique GS and 3 unique WB protein coding genes, and the variable surface protein (VSP) repertoires of the two isolates are completely different. The promoters of several enzymes involved in the synthesis of the cyst-wall lack binding sites for encystation-specific transcription factors in GS. Several synteny-breaks were detected and verified. The tetraploid GS genome shows higher levels of overall allelic sequence polymorphism (0.5 versus <0.01% in WB). The genomic differences between WB and GS may explain some of the observed biological and clinical differences between the two isolates, and it suggests that assemblage A and B Giardia can be two different species
    corecore