413 research outputs found

    Seebeck Effect in Magnetic Tunnel Junctions

    Full text link
    Creating temperature gradients in magnetic nanostructures has resulted in a new research direction, i.e., the combination of magneto- and thermoelectric effects. Here, we demonstrate the observation of one important effect of this class: the magneto-Seebeck effect. It is observed when a magnetic configuration changes the charge based Seebeck coefficient. In particular, the Seebeck coefficient changes during the transition from a parallel to an antiparallel magnetic configuration in a tunnel junction. In that respect, it is the analog to the tunneling magnetoresistance. The Seebeck coefficients in parallel and antiparallel configuration are in the order of the voltages known from the charge-Seebeck effect. The size and sign of the effect can be controlled by the composition of the electrodes' atomic layers adjacent to the barrier and the temperature. Experimentally, we realized 8.8 % magneto-Seebeck effect, which results from a voltage change of about -8.7 {\mu}V/K from the antiparallel to the parallel direction close to the predicted value of -12.1 {\mu}V/K.Comment: 16 pages, 7 figures, 2 table

    Spin Caloritronics

    Get PDF
    This is a brief overview of the state of the art of spin caloritronics, the science and technology of controlling heat currents by the electron spin degree of freedom (and vice versa).Comment: To be published in "Spin Current", edited by S. Maekawa, E. Saitoh, S. Valenzuela and Y. Kimura, Oxford University Pres

    Cooling and heating with electron spins: Observation of the spin Peltier effect

    Get PDF
    The Peltier coefficient describes the amount of heat that is carried by an electrical current when it passes through a material. Connecting two materials with different Peltier coefficients causes a net heat flow towards or away from the interface, resulting in cooling or heating at the interface - the Peltier effect. Spintronics describes the transport of charge and angular momentum by making use of separate spin-up and spin-down channels. Recently, the merger of thermoelectricity with spintronics has given rise to a novel and rich research field named spin caloritronics. Here, we report the first direct experimental observation of refrigeration/heating driven by a spin current, a new spin thermoelectric effect which we call the spin Peltier effect. The heat flow is generated by the spin dependency of the Peltier coefficient inside the ferromagnetic material. We explored the effect in a specifically designed spin valve pillar structure by measuring the temperature using an electrically isolated thermocouple. The difference in heat flow between the two magnetic configurations leads to a change in temperature. With the help of 3-D finite element modeling, we extracted permalloy spin Peltier coefficients in the range of -0.9 to -1.3 mV. These results enable magnetic control of heat flow and provide new functionality for future spintronic devices

    Correct use of non-indexed eGFR for drug dosing and renal drug-related problems at hospital admission

    Get PDF
    PURPOSE Two to seven percent of the German adult population has a renal impairment (RI) with an estimated glomerular filtration rate (eGFR) < 60 ml/min/1.73m2. This often remains unrecognized and adjustment of drug therapy is lacking. To determine renal function in clinical routine, the CKD-EPI equation is used to calculate an indexed eGFR (ml/min/1.73m2). For drug dosing, it has to be individualized to a non-indexed eGFR (ml/min) by the patient's body surface area. Here, we investigated the number of patients admitted to urological wards of a teaching hospital with RI between July and December 2016. Additionally, we correctly used the eGFRnon-indexed for drug and dosage adjustments and to analyse the use of renal risk drugs (RRD) and renal drug-related problems (rDRP). METHODS In a retrospective observational study, urological patients with pharmacist-led medication reconciliation at hospital admission and eGFRindexed (CKD-EPI) of 15-59 ml/min/1.73m2 were identified. Indexed eGFR (ml/min/1.73m2) was recalculated with body surface area to non-indexed eGFR (ml/min) for correct drug dosing. Medication at admission was reviewed for RRD and based on the eGFRnon-indexed for rDRP, e.g. inappropriate dose or contraindication. RESULTS Of 1320 screened patients, 270 (20.5%) presented with an eGFRindexed of 15–59 ml/min/1.73m2. After readjustment, 203 (15.4%) patients had an eGFRnon-indexed of 15–59 ml/min. Of these, 190 (93.6%) used ≄ 1 drugs at admission with 660 of 1209 (54.7%) drugs classified as RRD. At least one rDRP was identified in 115 (60.5%) patients concerning 264 (21.8%) drugs. CONCLUSION Renal impairment is a common risk factor for medication safety in urologic patients admitted to a hospital. Considerable shifts were seen in eGFR-categories when correctly calculating eGFRnon-indexed for drug dosing purposes. The fact that more than half of the study patients showed rDRP at hospital admission underlines the need to consider this risk factor appropriately

    Giant thermoelectric effect in Al2O3 magnetic tunnel junctions

    Full text link
    Thermoelectric effects in magnetic nanostructures and the so-called spin caloritronics are attracting much interest. Indeed it provides a new way to control and manipulate spin currents which are key elements of spin-based electronics. Here we report on giant magnetothermoelectric effect in Al2O3 magnetic tunnel junctions. The thermovoltage in this geometry can reach 1 mV. Moreover a magneto-thermovoltage effect could be measured with ratio similar to the tunnel magnetoresistance ratio. The Seebeck coefficient can then be tuned by changing the relative magnetization orientation of the two magnetic layers in the tunnel junction. Therefore our experiments extend the range of spintronic devices application to thermoelectricity and provide a crucial piece of information for understanding the physics of thermal spin transport.Comment: 9 pages, 7 figures, added reference

    Genes Important for Catalase Activity in Enterococcus faecalis

    Get PDF
    Little in general is known about how heme proteins are assembled from their constituents in cells. The Gram-positive bacterium Enterococcus faecalis cannot synthesize heme and does not depend on it for growth. However, when supplied with heme in the growth medium the cells can synthesize two heme proteins; catalase (KatA) and cytochrome bd (CydAB). To identify novel factors important for catalase biogenesis libraries of E. faecalis gene insertion mutants were generated using two different types of transposons. The libraries of mutants were screened for clones deficient in catalase activity using a colony zymogram staining procedure. Analysis of obtained clones identified, in addition to katA (encoding the catalase enzyme protein), nine genes distributed over five different chromosomal loci. No factors with a dedicated essential role in catalase biogenesis or heme trafficking were revealed, but the results indicate the RNA degradosome (srmB, rnjA), an ABC-type oligopeptide transporter (oppBC), a two-component signal transducer (etaR), and NADH peroxidase (npr) as being important for expression of catalase activity in E. faecalis. It is demonstrated that catalase biogenesis in E. faecalis is independent of the CydABCD proteins and that a conserved proline residue in the N-terminal region of KatA is important for catalase assembly

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore