65 research outputs found
Bell Correlations and the Common Future
Reichenbach's principle states that in a causal structure, correlations of
classical information can stem from a common cause in the common past or a
direct influence from one of the events in correlation to the other. The
difficulty of explaining Bell correlations through a mechanism in that spirit
can be read as questioning either the principle or even its basis: causality.
In the former case, the principle can be replaced by its quantum version,
accepting as a common cause an entangled state, leaving the phenomenon as
mysterious as ever on the classical level (on which, after all, it occurs). If,
more radically, the causal structure is questioned in principle, closed
space-time curves may become possible that, as is argued in the present note,
can give rise to non-local correlations if to-be-correlated pieces of classical
information meet in the common future --- which they need to if the correlation
is to be detected in the first place. The result is a view resembling Brassard
and Raymond-Robichaud's parallel-lives variant of Hermann's and Everett's
relative-state formalism, avoiding "multiple realities."Comment: 8 pages, 5 figure
Evolutionary and pulsational properties of white dwarf stars
Abridged. White dwarf stars are the final evolutionary stage of the vast
majority of stars, including our Sun. The study of white dwarfs has potential
applications to different fields of astrophysics. In particular, they can be
used as independent reliable cosmic clocks, and can also provide valuable
information about the fundamental parameters of a wide variety of stellar
populations, like our Galaxy and open and globular clusters. In addition, the
high densities and temperatures characterizing white dwarfs allow to use these
stars as cosmic laboratories for studying physical processes under extreme
conditions that cannot be achieved in terrestrial laboratories. They can be
used to constrain fundamental properties of elementary particles such as axions
and neutrinos, and to study problems related to the variation of fundamental
constants.
In this work, we review the essentials of the physics of white dwarf stars.
Special emphasis is placed on the physical processes that lead to the formation
of white dwarfs as well as on the different energy sources and processes
responsible for chemical abundance changes that occur along their evolution.
Moreover, in the course of their lives, white dwarfs cross different
pulsational instability strips. The existence of these instability strips
provides astronomers with an unique opportunity to peer into their internal
structure that would otherwise remain hidden from observers. We will show that
this allows to measure with unprecedented precision the stellar masses and to
infer their envelope thicknesses, to probe the core chemical stratification,
and to detect rotation rates and magnetic fields. Consequently, in this work,
we also review the pulsational properties of white dwarfs and the most recent
applications of white dwarf asteroseismology.Comment: 85 pages, 28 figures. To be published in The Astronomy and
Astrophysics Revie
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
Estimating fine-root production by tree species and understorey functional groups in two contrasting peatland forests
Background and aims Estimation of root-mediated carbon fluxes in forested peatlands is needed for understanding ecosystem functioning and supporting greenhouse gas inventories. Here, we aim to determine the optimal methodology for utilizing ingrowth cores in estimating annual fine-root production (FRP) and its vertical distribution in trees, shrubs and herbs. Methods We used 3-year data obtained with modified ingrowth core method and tested two calculation methods: 'ingrowth-dividing' and `ingrowth-subtracting'. Results The ingrowth-dividing method combined with a 2-year incubation of ingrowth cores can be used for the 'best estimate' of FRP. The FRP in the nutrient-rich fen forest (561 g m(-2)) was more than twice that in the nutrient-poor bog forest (244 g m(-2)). Most FRP occurred in the top 20-cm layer (76-82 %). Tree FRP accounted for 71 % of total FRP in the bog and 94 % in the fen forests, respectively, following the aboveground vegetation patterns; however, in fen forest the proportions of spruce and birch in FRP were higher than their proportions in stand basal area. Conclusions Our methodology may be used to study peatland FRP patterns more widely and will reduce the volume of labour-intensive work, but will benefit from verification with other methods, as is the case in all in situ FRP studies.Peer reviewe
Factors associated with initiation and completion of the quadrivalent human papillomavirus vaccine series in an ontario cohort of grade 8 girls
Abstract
Background
Although over a hundred million dollars have been invested in offering free quadrivalent human papillomavirus (HPV) vaccination to young girls in Ontario, there continues to be very little information about its usage. In order to successfully guide future HPV vaccine programming, it is important to monitor HPV vaccine use and determine factors associated with use in this population.
Methods
Linking administrative health and immunization databases, we conducted a population-based, retrospective cohort study of girls eligible for Ontario's Grade 8 HPV vaccination program in Kingston, Frontenac, Lennox, and Addington. We determined the proportion of girls who initiated (at least one dose) and completed (all three doses) the vaccination series overall and according to socio-demographics, vaccination history, health services utilization, medical history, and program year. Multivariable logistic regression was used to estimate the strength of association between individual factors and initiation and completion, adjusted for all other factors.
Results
We identified a cohort of 2519 girls, 56.6% of whom received at least one dose of the HPV vaccine. Among vaccinated girls, 85.3% received all three doses. Vaccination history was the strongest predictor of initiation in that girls who received the measles-mumps-rubella, meningococcal C, and hepatitis B vaccines were considerably more likely to also receive the HPV vaccine (odds ratio 4.89; 95% confidence interval 4.04-5.92). Nevertheless, HPV vaccine uptake was more than 20% lower than that of these other vaccines. In addition, while series initiation was not influenced by income, series completion was. In particular, girls of low income were the least likely to receive all three indicated doses of the HPV vaccine (odds ratio 0.45; 95% confidence interval 0.28-0.72).
Conclusions
The current low level of HPV vaccine acceptance in Kingston, Frontenac, Lennox, and Addington will likely have important implications in terms of the health benefits and cost-effectiveness of its publicly funded program. We identified important factors associated with series initiation and completion that should be considered in efforts to improve HPV vaccine use in this population
The role of epigenetics in renal ageing
An ability to separate natural ageing processes from processes specific to morbidities is required to understand the heterogeneity of age-related organ dysfunction. Mechanistic insight into how epigenetic factors regulate ageing throughout the life course, linked to a decline in renal function with ageing, is already proving to be of value in the analyses of clinical and epidemiological cohorts. Noncoding RNAs provide epigenetic regulatory circuits within the kidney, which reciprocally interact with DNA methylation processes, histone modification and chromatin. These interactions have been demonstrated to reflect the biological age and function of renal allografts. Epigenetic factors control gene expression and activity in response to environmental perturbations. They also have roles in highly conserved signalling pathways that modulate ageing, including the mTOR and insulin/insulin-like growth factor signalling pathways, and regulation of sirtuin activity. Nutrition, the gut microbiota, inflammation and environmental factors, including psychosocial and lifestyle stresses, provide potential mechanistic links between the epigenetic landscape of ageing and renal dysfunction. Approaches to modify the renal epigenome via nutritional intervention, targeting the methylome or targeting chromatin seem eminently feasible, although caution is merited owing to the potential for intergenerational and transgenerational effects
The PLATO 2.0 mission
PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4-16 mag). It focusses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science
Droplet Actuation by Electrowetting-on-Dielectric (EWOD): A Review
This paper reviews publications that have fortified our understanding of the electrowetting-on-dielectric (EWOD) actuation mechanism. Over the last decade, growing interest in EWOD has led to a wide range of scientific and technological investigations motivated by its applicability in microfluidics, especially for droplet-based optical and lab-on-a-chip systems. At this point in time, we believe that it is helpful to summarize the observations, insights, and modeling techniques that have led to the current picture showing how forces act on liquid droplets and how droplets respond in EWOD microfluidic devices. We discuss the basic physics of EWOD and explain the mechanical response of a droplet using free-body diagrams. It is our hope that this review will inspire new research approaches and help design useful devices. © 2012 Copyright Taylor and Francis Group, LLC
- âŠ