166 research outputs found

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Virus-Receptor Mediated Transduction of Dendritic Cells by Lentiviruses Enveloped with Glycoproteins Derived from Semliki Forest Virus

    Get PDF
    Lentiviruses have recently attracted considerable interest for their potential as a genetic modification tool for dendritic cells (DCs). In this study, we explore the ability of lentiviruses enveloped with alphaviral envelope glycoproteins derived from Semliki Forest virus (SFV) to mediate transduction of DCs. We found that SFV glycoprotein (SFV-G)-pseudotyped lentiviruses use C-type lectins (DC-SIGN and L-SIGN) as attachment factors for transduction of DCs. Importantly, SFV-G pseudotypes appear to have enhanced transduction towards C-type lectin-expressing cells when produced under conditions limiting glycosylation to simple high-mannose, N-linked glycans. These results, in addition to the natural DC tropism of SFV-G, offer evidence to support the use of SFV-G-bearing lentiviruses to genetically modify DCs for the study of DC biology and DC-based immunotherapy

    A systematic approach to biomarker discovery; Preamble to "the iSBTc-FDA taskforce on immunotherapy biomarkers"

    Get PDF
    The International Society for the Biological Therapy of Cancer (iSBTc) has initiated in collaboration with the United States Food and Drug Administration (FDA) a programmatic look at innovative avenues for the identification of relevant parameters to assist clinical and basic scientists who study the natural course of host/tumor interactions or their response to immune manipulation. The task force has two primary goals: 1) identify best practices of standardized and validated immune monitoring procedures and assays to promote inter-trial comparisons and 2) develop strategies for the identification of novel biomarkers that may enhance our understating of principles governing human cancer immune biology and, consequently, implement their clinical application. Two working groups were created that will report the developed best practices at an NCI/FDA/iSBTc sponsored workshop tied to the annual meeting of the iSBTc to be held in Washington DC in the Fall of 2009. This foreword provides an overview of the task force and invites feedback from readers that might be incorporated in the discussions and in the final document

    Nutrient supply affects the mRNA expression profile of the porcine skeletal muscle

    Get PDF
    Background: The genetic basis of muscle fat deposition in pigs is not well known. So far, we have only identified a limited number of genes involved in the absorption, transport, storage and catabolism of lipids. Such information is crucial to interpret, from a biological perspective, the results of genome-wide association analyses for intramuscular fat content and composition traits. Herewith, we have investigated how the ingestion of food changes gene expression in the gluteus medius muscle of Duroc pigs. Results: By comparing the muscle mRNA expression of fasted pigs (T0) with that of pigs sampled 5 h (T1) and 7 h (T2) after food intake, we have detected differential expression (DE) for 148 (T0-T1), 520 (T0-T2) and 135 (T1-T2) genes (q-value of 1.5). Many of these DE genes were transcription factors, suggesting that we have detected the coordinated response of the skeletal muscle to nutrient supply. We also found DE genes with a dual role in oxidative stress and angiogenesis (THBS1, THBS2 and TXNIP), two biological processes that are probably activated in the post-prandial state. Finally, we have identified several loci playing a key role in the modulation of circadian rhythms (ARNTL, PER1, PER2, BHLHE40, NR1D1, SIK1, CIART and CRY2), a result that indicates that the porcine muscle circadian clock is modulated by nutrition. Conclusion: We have shown that hundreds of genes change their expression in the porcine skeletal muscle in response to nutrient intake. Many of these loci do not have a known metabolic role, a result that suggests that our knowledge about the genetic basis of muscle energy homeostasis is still incomplete
    corecore