278 research outputs found

    The Effects of Handling and Anesthetic Agents on the Stress Response and Carbohydrate Metabolism in Northern Elephant Seals

    Get PDF
    Free-ranging animals often cope with fluctuating environmental conditions such as weather, food availability, predation risk, the requirements of breeding, and the influence of anthropogenic factors. Consequently, researchers are increasingly measuring stress markers, especially glucocorticoids, to understand stress, disturbance, and population health. Studying free-ranging animals, however, comes with numerous difficulties posed by environmental conditions and the particular characteristics of study species. Performing measurements under either physical restraint or chemical sedation may affect the physiological variable under investigation and lead to values that may not reflect the standard functional state of the animal. This study measured the stress response resulting from different handling conditions in northern elephant seals and any ensuing influences on carbohydrate metabolism. Endogenous glucose production (EGP) was measured using [6-3H]glucose and plasma cortisol concentration was measured from blood samples drawn during three-hour measurement intervals. These measurements were conducted in weanlings and yearlings with and without the use of chemical sedatives—under chemical sedation, physical restraint, or unrestrained. We compared these findings with measurements in adult seals sedated in the field. The method of handling had a significant influence on the stress response and carbohydrate metabolism. Physically restrained weanlings and yearlings transported to the lab had increased concentrations of circulating cortisol (F11, 46 = 25.2, p<0.01) and epinephrine (F3, 12 = 5.8, p = 0.01). Physical restraint led to increased EGP (t = 3.1, p = 0.04) and elevated plasma glucose levels (t = 8.2, p<0.01). Animals chemically sedated in the field typically did not exhibit a cortisol stress response. The combination of anesthetic agents (Telazol, ketamine, and diazepam) used in this study appeared to alleviate a cortisol stress response due to handling in the field without altering carbohydrate metabolism. Measures of hormone concentrations and metabolism made under these conditions are more likely to reflect basal values

    Human Perception of Fear in Dogs Varies According to Experience with Dogs

    Get PDF
    To investigate the role of experience in humans’ perception of emotion using canine visual signals, we asked adults with various levels of dog experience to interpret the emotions of dogs displayed in videos. The video stimuli had been pre-categorized by an expert panel of dog behavior professionals as showing examples of happy or fearful dog behavior. In a sample of 2,163 participants, the level of dog experience strongly predicted identification of fearful, but not of happy, emotional examples. The probability of selecting the “fearful” category to describe fearful examples increased with experience and ranged from.30 among those who had never lived with a dog to greater than.70 among dog professionals. In contrast, the probability of selecting the “happy” category to describe happy emotional examples varied little by experience, ranging from.90 to.93. In addition, the number of physical features of the dog that participants reported using for emotional interpretations increased with experience, and in particular, more-experienced respondents were more likely to attend to the ears. Lastly, more-experienced respondents provided lower difficulty and higher accuracy self-ratings than less-experienced respondents when interpreting both happy and fearful emotional examples. The human perception of emotion in other humans has previously been shown to be sensitive to individual differences in social experience, and the results of the current study extend the notion of experience-dependent processes from the intraspecific to the interspecific domain

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Deficient maternal care resulting from immunological stress during pregnancy is associated with a sex-dependent enhancement of conditioned fear in the offspring

    Get PDF
    Activation of maternal stress response systems during pregnancy has been associated with altered postpartum maternal care and subsequent abnormalities in the offspring’s brain and behavioral development. It remains unknown, however, whether similar effects may be induced by exposure to immunological stress during pregnancy. The present study was designed to address this issue in a mouse model of prenatal immune activation by the viral mimic polyriboinosinic–polyribocytidilic acid (PolyI:C). Pregnant mice were exposed to PolyI:C-induced immune challenge or sham treatment, and offspring born to PolyI:C- and sham-treated dams were simultaneously cross-fostered to surrogate rearing mothers, which had either experienced inflammatory or vehicle treatment during pregnancy. We evaluated the effects of the maternal immunological manipulation on postpartum maternal behavior, and we assessed the prenatal and postnatal maternal influences on anxiety- and fear-related behavior in the offspring at the peri-adolescent and adult stage of development. We found that PolyI:C treatment during pregnancy led to changes in postpartum maternal behavior in the form of reduced pup licking/grooming and increased nest building activity. Furthermore, the adoption of neonates by surrogate rearing mothers, which had experienced PolyI:C-induced immunological stress during pregnancy, led to enhanced conditioned fear in the peri-adolescent and adult offspring, an effect that was exclusively seen in female but not male subjects. Unconditioned (innate) anxiety-related behavior as assessed in the elevated plus maze and open field explorations tests were not affected by the prenatal and postnatal manipulations. Our results thus highlight that being raised by gestationally immune-challenged surrogate mothers increases the vulnerability for specific forms of fear-related behavioral pathology in later life, and that this association may be mediated by deficits in postpartum maternal care. This may have important implications for the identification and characterization of early-life risk factors involved in the developmental etiology of fear-related neuropsychiatric disorders

    Steroid receptor coactivator 1 deficiency increases MMTV-neu mediated tumor latency and differentiation specific gene expression, decreases metastasis, and inhibits response to PPAR ligands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The peroxisome proliferator activated receptor (PPAR) subgroup of the nuclear hormone receptor superfamily is activated by a variety of natural and synthetic ligands. PPARs can heterodimerize with retinoid X receptors, which have homology to other members of the nuclear receptor superfamily. Ligand binding to PPAR/RXRs results in recruitment of transcriptional coactivator proteins such as steroid receptor coactivator 1 (SRC-1) and CREB binding protein (CBP). Both SRC-1 and CBP are histone acetyltransferases, which by modifying nucleosomal histones, produce more open chromatin structure and increase transcriptional activity. Nuclear hormone receptors can recruit limiting amounts of coactivators from other transcription factor binding sites such as AP-1, thereby inhibiting the activity of AP-1 target genes. PPAR and RXR ligands have been used in experimental breast cancer therapy. The role of coactivator expression in mammary tumorigenesis and response to drug therapy has been the subject of recent studies.</p> <p>Methods</p> <p>We examined the effects of loss of SRC-1 on MMTV-neu mediated mammary tumorigenesis.</p> <p>Results</p> <p>SRC-1 null mutation in mammary tumor prone mice increased the tumor latency period, reduced tumor proliferation index and metastasis, inhibited response to PPAR and RXR ligands, and induced genes involved in mammary gland differentiation. We also examined human breast cancer cell lines overexpressing SRC-1 or CBP. Coactivator overexpression increased cellular proliferation with resistance to PPAR and RXR ligands and remodeled chromatin of the proximal epidermal growth factor receptor promoter.</p> <p>Conclusions</p> <p>These results indicate that histone acetyltransferases play key roles in mammary tumorigenesis and response to anti-proliferative therapies.</p

    Early maternal deprivation affects dentate gyrus structure and emotional learning in adult female rats

    Get PDF
    Rationale: Stress elicits functional and structural changes in the hippocampus. Early life stress is one of the major risk factors for stress-related pathologies like depression. Patients suffering from depression show a reduced hippocampal volume, and in women, this occurs more often when depression is preceded by childhood trauma. However, the underlying mechanisms that account for a reduced hippocampal volume are unknown. Objective: We examined the effects of maternal absence on structure and function of the hippocampus in female offspring. Methods: We studied whether 24 h of maternal deprivation (MD) on postnatal day 3 altered adult neurogenesis, individual neuronal morphology and dentate gyrus (DG) structure in young adult female rats. In addition, functional alterations were addressed by studying synaptic plasticity in vitro, and spatial as well as emotional learning was tested. Results: Adult females that were subjected to MD revealed significant reductions in DG granule cell number and density. In addition, DG neurons were altered in their dendritic arrangement. No effects on the rate of adult neurogenesis were found. Furthermore, MD did not alter synaptic plasticity in vitro, neither under normal nor high-stress conditions. In addition, spatial learning and contextual fear conditioning were comparable between control and MD animals. However, MD animals showed an improved amygdala-dependent fear memory. Conclusion: Although early life stress exposure did not impair hippocampus-dependent functioning in female offspring, it irreversibly affected DG structure by reducing cell numbers. This may be relevant for the reduced hippocampal volume observed in depression and the increased vulnerability of women to develop depression

    An insight into the sialome of Simulium guianense (DIPTERA:SIMulIIDAE), the main vector of River Blindness Disease in Brazil

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the composition and function of the saliva in black flies such as <it>Simulium guianense</it>, the main vector of river blindness disease in Brazil. The complex salivary potion of hematophagous arthropods counteracts their host's hemostasis, inflammation, and immunity.</p> <p>Results</p> <p>Transcriptome analysis revealed ubiquitous salivary protein families--such as the Antigen-5, Yellow, Kunitz domain, and serine proteases--in the <it>S. guianense </it>sialotranscriptome. Insect-specific families were also found. About 63.4% of all secreted products revealed protein families found only in <it>Simulium</it>. Additionally, we found a novel peptide similar to kunitoxin with a structure distantly related to serine protease inhibitors. This study revealed a relative increase of transcripts of the SVEP protein family when compared with <it>Simulium vittatum </it>and <it>S. nigrimanum </it>sialotranscriptomes. We were able to extract coding sequences from 164 proteins associated with blood and sugar feeding, the majority of which were confirmed by proteome analysis.</p> <p>Conclusions</p> <p>Our results contribute to understanding the role of <it>Simulium </it>saliva in transmission of <it>Onchocerca volvulus </it>and evolution of salivary proteins in black flies. It also consists of a platform for mining novel anti-hemostatic compounds, vaccine candidates against filariasis, and immuno-epidemiologic markers of vector exposure.</p
    corecore