187 research outputs found

    The Yersinia high-pathogenicity island

    Get PDF
    A pathogenicity island present only in highly pathogenic strains of Yersinia (Y. enterocolitica 1B, Y. pseudotuberculosis I and Y. pestis) has been identified on the chromosome of Yersinia spp. and has been designated High- Pathogenicity Island (HPI). The Yersinia HPI carries a cluster of genes involved in the biosynthesis, transport and regulation of the siderophore yersiniabactin. The major function of this island is thus to acquire iron molecules essential for in vivo bacterial growth and dissemination. The presence of an integrase gene and att sites homologous to those of phage P4, together with a G + C content much higher than the chromosomal background, suggests that the HPI is of foreign origin and has been acquired by chromosomal integration of a phage. The HPI can excise from the chromosome of Y. pseudotuberculosis and is found inserted into any of the three copies of the asn tRNA loci present in this species. A unique characteristic of the HPI is its wide distribution in various enterobacteria. Although first identified in Yersinia spp., it has subsequently been detected in other genera such as E. coli, Klebsiella and Citrobacter

    Use of whole-genus genome sequence data to develop a multilocus sequence typing tool that accurately identifies Yersinia isolates to the species and subspecies levels

    Get PDF
    The genus Yersinia is a large and diverse bacterial genus consisting of human-pathogenic species, a fish-pathogenic species, and a large number of environmental species. Recently, the phylogenetic and population structure of the entire genus was elucidated through the genome sequence data of 241 strains encompassing every known species in the genus. Here we report the mining of this enormous data set to create a multilocus sequence typing-based scheme that can identify Yersinia strains to the species level to a level of resolution equal to that for whole-genome sequencing. Our assay is designed to be able to accurately subtype the important human-pathogenic species Yersinia enterocolitica to whole-genome resolution levels. We also report the validation of the scheme on 386 strains from reference laboratory collections across Europe. We propose that the scheme is an important molecular typing system to allow accurate and reproducible identification of Yersinia isolates to the species level, a process often inconsistent in nonspecialist laboratories. Additionally, our assay is the most phylogenetically informative typing scheme available for Y. enterocolitica

    A Natural System of Chromosome Transfer in Yersinia pseudotuberculosis

    Get PDF
    The High Pathogenicity Island of Yersinia pseudotuberculosis IP32637 was previously shown to be horizontally transferable as part of a large chromosomal segment. We demonstrate here that at low temperature other chromosomal loci, as well as a non-mobilizable plasmid (pUC4K), are also transferable. This transfer, designated GDT4 (Generalized DNA Transfer at 4°C), required the presence of an IP32637 endogenous plasmid (pGDT4) that carries several mobile genetic elements and a conjugation machinery. We established that cure of this plasmid or inactivation of its sex pilus fully abrogates this process. Analysis of the mobilized pUC4K recovered from transconjugants revealed the insertion of one of the pGDT4–borne ISs, designated ISYps1, at different sites on the transferred plasmid molecules. This IS belongs to the IS6 family, which moves by replicative transposition, and thus could drive the formation of cointegrates between pGDT4 and the host chromosome and could mediate the transfer of chromosomal regions in an Hfr-like manner. In support of this model, we show that a suicide plasmid carrying ISYps1 is able to integrate itself, flanked by ISYps1 copies, at multiple locations into the Escherichia coli chromosome. Furthermore, we demonstrate the formation of RecA-independent cointegrates between the ISYps1-harboring plasmid and an ISYps1-free replicon, leading to the passive transfer of the non-conjugative plasmid. We thus demonstrate here a natural mechanism of horizontal gene exchange, which is less constrained and more powerful than the classical Hfr mechanism, as it only requires the presence of an IS6-type element on a conjugative replicon to drive the horizontal transfer of any large block of plasmid or chromosomal DNA. This natural mechanism of chromosome transfer, which occurs under conditions mimicking those found in the environment, may thus play a significant role in bacterial evolution, pathogenesis, and adaptation to new ecological niches

    The Complete Genome Sequence of Yersinia pseudotuberculosis IP31758, the Causative Agent of Far East Scarlet-Like Fever

    Get PDF
    The first reported Far East scarlet-like fever (FESLF) epidemic swept the Pacific coastal region of Russia in the late 1950s. Symptoms of the severe infection included erythematous skin rash and desquamation, exanthema, hyperhemic tongue, and a toxic shock syndrome. The term FESLF was coined for the infection because it shares clinical presentations with scarlet fever caused by group A streptococci. The causative agent was later identified as Yersinia pseudotuberculosis, although the range of morbidities was vastly different from classical pseudotuberculosis symptoms. To understand the origin and emergence of the peculiar clinical features of FESLF, we have sequenced the genome of the FESLF-causing strain Y. pseudotuberculosis IP31758 and compared it with that of another Y. pseudotuberculosis strain, IP32953, which causes classical gastrointestinal symptoms. The unique gene pool of Y pseudotuberculosis IP31758 accounts for more than 260 strain-specific genes and introduces individual physiological capabilities and virulence determinants, with a significant proportion horizontally acquired that likely originated from Enterobacteriaceae and other soil-dwelling bacteria that persist in the same ecological niche. The mobile genome pool includes two novel plasmids phylogenetically unrelated to all currently reported Yersinia plasmids. An icm/dot type IVB secretion system, shared only with the intracellular persisting pathogens of the order Legionellales, was found on the larger plasmid and could contribute to scarlatinoid fever symptoms in patients due to the introduction of immunomodulatory and immunosuppressive capabilities. We determined the common and unique traits resulting from genome evolution and speciation within the genus Yersinia and drew a more accurate species border between Y. pseudotuberculosis and Y. pestis. In contrast to the lack of genetic diversity observed in the evolutionary young descending Y. pestis lineage, the population genetics of Y. pseudotuberculosis is more heterogenous. Both Y. pseudotuberculosis strains IP31758 and the previously sequenced Y. pseudotuberculosis strain IP32953 have evolved by the acquisition of specific plasmids and by the horizontal acquisition and incorporation of different genetic information into the chromosome, which all together or independently seems to potentially impact the phenotypic adaptation of these two strains

    Sudden Onset of Pseudotuberculosis in Humans, France, 2004–05

    Get PDF
    Cases of Yersinia pseudotuberculosis infection increased in France during the winter of 2004–05 in the absence of epidemiologic links between patients or strains. This increase represents transient amplification of a pathogen endemic to the area and may be related to increased prevalence of the pathogen in rodent reservoirs

    Growth of Yersinia pseudotuberculosis in human plasma: impacts on virulence and metabolic gene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In man, infection by the Gram-negative enteropathogen <it>Yersinia pseudotuberculosis </it>is usually limited to the terminal ileum. However, in immunocompromised patients, the microorganism may disseminate from the digestive tract and thus cause a systemic infection with septicemia.</p> <p>Results</p> <p>To gain insight into the metabolic pathways and virulence factors expressed by the bacterium at the blood stage of pseudotuberculosis, we compared the overall gene transcription patterns (the transcriptome) of bacterial cells cultured in either human plasma or Luria-Bertani medium. The most marked plasma-triggered metabolic consequence in <it>Y. pseudotuberculosis </it>was the switch to high glucose consumption, which is reminiscent of the acetogenic pathway (known as "glucose overflow") in <it>Escherichia coli</it>. However, upregulation of the glyoxylate shunt enzymes suggests that (in contrast to <it>E. coli</it>) acetate may be further metabolized in <it>Y. pseudotuberculosis</it>. Our data also indicate that the bloodstream environment can regulate major virulence genes (positively or negatively); the <it>yadA </it>adhesin gene and most of the transcriptional units of the pYV-encoded type III secretion apparatus were found to be upregulated, whereas transcription of the pH6 antigen locus was strongly repressed.</p> <p>Conclusion</p> <p>Our results suggest that plasma growth of <it>Y. pseudotuberculosis </it>is responsible for major transcriptional regulatory events and prompts key metabolic reorientations within the bacterium, which may in turn have an impact on virulence.</p

    Multiple antimicrobial resistance in plague: An emerging public health risk

    Get PDF
    Antimicrobial resistance in Yersinia pestis is rare, yet constitutes a significant international public health and biodefense threat. In 1995, the first multidrug resistant (MDR) isolate of Y. pestis (strain IP275) was identified, and was shown to contain a self-transmissible plasmid (pIP1202) that conferred resistance to many of the antimicrobials recommended for plague treatment and prophylaxis. Comparative analysis of the DNA sequence of Y. pestis plasmid pIP1202 revealed a near identical IncA/C plasmid backbone that is shared by MDR plasmids isolated from Salmonella enterica serotype Newport SL254 and the fish pathogen Yersinia ruckeri YR71. The high degree of sequence identity and gene synteny between the plasmid backbones suggests recent acquisition of these plasmids from a common ancestor. In addition, the Y. pestis pIP1202-like plasmid backbone was detected in numerous MDR enterobacterial pathogens isolated from retail meat samples collected between 2002 and 2005 in the United States. Plasmid-positive strains were isolated from beef, chicken, turkey and pork, and were found in samples from the following states: California, Colorado, Connecticut, Georgia, Maryland, Minnesota, New Mexico, New York and Oregon. Our studies reveal that this common plasmid backbone is broadly disseminated among MDR zoonotic pathogens associated with agriculture. This reservoir of mobile resistance determinants has the potential to disseminate to Y. pestis and other human and zoonotic bacterial pathogens and therefore represents a significant public health concern

    Plague: past, present and future

    Get PDF
    [Introduction] Recent experience with SARS (severe acute respiratory syndrome) [1] and avian flu shows that the public and political response to threats from new anthropozoonoses can be near-hysteria. This can readily make us forget more classical animal-borne diseases, such as plague (Box 1). Three recent international meetings on plague (Box 2) concluded that: (1) it should be re-emphasised that the plague bacillus (Yersinia pestis) still causes several thousand human cases per year [2,3] (Figure 1); (2) locally perceived risks far outstrip the objective risk based purely on the number of cases [2]; (3) climate change might increase the risk of plague outbreaks where plague is currently endemic and new plague areas might arise [2,4]; (4) remarkably little is known about the dynamics of plague in its natural reservoirs and hence about changing risks for humans [5]; and, therefore, (5) plague should be taken much more seriously by the international community than appears to be the case
    • 

    corecore