74 research outputs found

    Autoantibodies from patients with kidney allograft vasculopathy stimulate a proinflammatory switch in endothelial cells and monocytes mediated via GPCR-directed PAR1-TNF-α signaling

    Get PDF
    Non-HLA-directed regulatory autoantibodies (RABs) are known to target G-protein coupled receptors (GPCRs) and thereby contribute to kidney transplant vasculopathy and failure. However, the detailed underlying signaling mechanisms in human microvascular endothelial cells (HMECs) and immune cells need to be clarified in more detail. In this study, we compared the immune stimulatory effects and concomitant intracellular and extracellular signaling mechanisms of immunoglobulin G (IgG)-fractions from kidney transplant patients with allograft vasculopathy (KTx-IgG), to that from patients without vasculopathy, or matched healthy controls (Con-IgG). We found that KTx-IgG from patients with vasculopathy, but not KTx-IgG from patients without vasculopathy or Con-IgG, elicits HMEC activation and subsequent upregulation and secretion of tumor necrosis factor alpha (TNF-α) from HMECs, which was amplified in the presence of the protease-activated thrombin receptor 1 (PAR1) activator thrombin, but could be omitted by selectively blocking the PAR1 receptor. The amount and activity of the TNF-α secreted by HMECs stimulated with KTx-IgG from patients with vasculopathy was sufficient to induce subsequent THP-1 monocytic cell activation. Furthermore, AP-1/c-FOS, was identified as crucial transcription factor complex controlling the KTx-IgG-induced endothelial TNF-α synthesis, and mircoRNA-let-7f-5p as a regulatory element in modulating the underlying signaling cascade. In conclusion, exposure of HMECs to KTx-IgG from patients with allograft vasculopathy, but not KTx-IgG from patients without vasculopathy or healthy Con-IgG, triggers signaling through the PAR1-AP-1/c-FOS-miRNA-let7-axis, to control TNF-α gene transcription and TNF-α-induced monocyte activation. These observations offer a greater mechanistic understanding of endothelial cells and subsequent immune cell activation in the clinical setting of transplant vasculopathy that can eventually lead to transplant failure, irrespective of alloantigen-directed responses

    Systematic review and meta-analysis of cell therapy for COVID-19: global clinical trial landscape, published safety/efficacy outcomes, cell product manufacturing and clinical delivery

    Get PDF
    During the pandemic of severe respiratory distress syndrome coronavirus 2 (SARS-CoV2), many novel therapeutic modalities to treat Coronavirus 2019 induced disease (COVID-19) were explored. This study summarizes 195 clinical trials of advanced cell therapies targeting COVID-19 that were registered over the two years between January 2020 to December 2021. In addition, this work also analyzed the cell manufacturing and clinical delivery experience of 26 trials that published their outcomes by July 2022. Our demographic analysis found the highest number of cell therapy trials for COVID-19 was in United States, China, and Iran (N=53, 43, and 19, respectively), with the highest number per capita in Israel, Spain, Iran, Australia, and Sweden (N=0.641, 0.232, 0,223, 0.194, and 0.192 trials per million inhabitants). The leading cell types were multipotent mesenchymal stromal/stem cells (MSCs), natural killer (NK) cells, and mononuclear cells (MNCs), accounting for 72%, 9%, and 6% of the studies, respectively. There were 24 published clinical trials that reported on infusions of MSCs. A pooled analysis of these MSC studies found that MSCs provide a relative risk reduction for all-cause COVID-19 mortality of RR=0.63 (95% CI 0.46 to 0.85). This result corroborates previously published smaller meta-analyses, which suggested that MSC therapy demonstrated a clinical benefit for COVID-19 patients. The sources of the MSCs used in these studies and their manufacturing and clinical delivery methods were remarkably heterogeneous, with some predominance of perinatal tissue-derived products. Our results highlight the important role that cell therapy products may play as an adjunct therapy in the management of COVID-19 and its related complications, as well as the importance of controlling key manufacturing parameters to ensure comparability between studies. Thus, we support ongoing calls for a global registry of clinical studies with MSC products that could better link cell product manufacturing and delivery methods to clinical outcomes. Although advanced cell therapies may provide an important adjunct treatment for patients affected by COVID-19 in the near future, preventing pathology through vaccination still remains the best protection to date. We conducted a systematic review and meta-analysis of advanced cell therapy clinical trials as potential novel treatment for COVID-19 (resulting from SARS-CoV-2 coronavirus infection), including analysis of the global clinical trial landscape, published safety/efficacy outcomes (RR/OR), and details on cell product manufacturing and clinical delivery. This study had a 2-year observation interval from start of January 2020 to end of December 2021, including a follow-up period until end of July to identify published outcomes, which covers the most vivid period of clinical trial activity, and is also the longest observation period studied until today. In total, we identified 195 registered advanced cell therapy studies for COVID-19, employing 204 individual cell products. Leading registered trial activity was attributed to the USA, China, and Iran. Through the end of July 2022, 26 clinical trials were published, with 24 out of 26 articles employing intravenous infusions (IV) of mesenchymal stromal/stem cell (MSC) products. Most of the published trials were attributed to China and Iran. The cumulative results from the 24 published studies employing infusions of MSCs indicated an improved survival (RR=0.63 with 95% Confidence Interval 0.46 to 0.85). Our study is the most comprehensive systematic review and meta-analysis on cell therapy trials for COVID-19 conducted to date, clearly identifying the USA, China, and Iran as leading advanced cell therapy trial countries for COVID-19, with further strong contributions from Israel, Spain, Australia and Sweden. Although advanced cell therapies may provide an important adjunct treatment for patients affected by COVID-19 in the future, preventing pathology through vaccination remains the best protection

    Autoantibodies from patients with kidney allograft vasculopathy stimulate a proinflammatory switch in endothelial cells and monocytes mediated via GPCR-directed PAR1-TNF-α signaling

    Get PDF
    Non-HLA-directed regulatory autoantibodies (RABs) are known to target G-protein coupled receptors (GPCRs) and thereby contribute to kidney transplant vasculopathy and failure. However, the detailed underlying signaling mechanisms in human microvascular endothelial cells (HMECs) and immune cells need to be clarified in more detail. In this study, we compared the immune stimulatory effects and concomitant intracellular and extracellular signaling mechanisms of immunoglobulin G (IgG)-fractions from kidney transplant patients with allograft vasculopathy (KTx-IgG), to that from patients without vasculopathy, or matched healthy controls (Con-IgG). We found that KTx-IgG from patients with vasculopathy, but not KTx-IgG from patients without vasculopathy or Con-IgG, elicits HMEC activation and subsequent upregulation and secretion of tumor necrosis factor alpha (TNF-alpha) from HMECs, which was amplified in the presence of the protease-activated thrombin receptor 1 (PAR1) activator thrombin, but could be omitted by selectively blocking the PAR1 receptor. The amount and activity of the TNF-alpha secreted by HMECs stimulated with KTx-IgG from patients with vasculopathy was sufficient to induce subsequent THP-1 monocytic cell activation. Furthermore, AP-1/c-FOS, was identified as crucial transcription factor complex controlling the KTx-IgG-induced endothelial TNF-alpha synthesis, and mircoRNA-let-7f-5p as a regulatory element in modulating the underlying signaling cascade. In conclusion, exposure of HMECs to KTx-IgG from patients with allograft vasculopathy, but not KTx-IgG from patients without vasculopathy or healthy Con-IgG, triggers signaling through the PAR1-AP-1/c-FOS-miRNA-let7-axis, to control TNF-alpha gene transcription and TNF-alpha-induced monocyte activation. These observations offer a greater mechanistic understanding of endothelial cells and subsequent immune cell activation in the clinical setting of transplant vasculopathy that can eventually lead to transplant failure, irrespective of alloantigen-directed responses

    Immunological signatures unveiled by integrative systems vaccinology characterization of dengue vaccination trials and natural infection

    Get PDF
    Introduction: Dengue virus infection is a global health problem lacking specific therapy, requiring an improved understanding of DENV immunity and vaccine responses. Considering the recent emerging of new dengue vaccines, here we performed an integrative systems vaccinology characterization of molecular signatures triggered by the natural DENV infection (NDI) and attenuated dengue virus infection models (DVTs). Methods and results: We analyzed 955 samples of transcriptomic datasets of patients with NDI and attenuated dengue virus infection trials (DVT1, DVT2, and DVT3) using a systems vaccinology approach. Differential expression analysis identified 237 common differentially expressed genes (DEGs) between DVTs and NDI. Among them, 28 and 60 DEGs were up or downregulated by dengue vaccination during DVT2 and DVT3, respectively, with 20 DEGs intersecting across all three DVTs. Enriched biological processes of these genes included type I/II interferon signaling, cytokine regulation, apoptosis, and T-cell differentiation. Principal component analysis based on 20 common DEGs (overlapping between DVTs and our NDI validation dataset) distinguished dengue patients by disease severity, particularly in the late acute phase. Machine learning analysis ranked the ten most critical predictors of disease severity in NDI, crucial for the anti-viral immune response. Conclusion: This work provides insights into the NDI and vaccine-induced overlapping immune response and suggests molecular markers (e.g., IFIT5, ISG15, and HERC5) for anti-dengue-specific therapies and effective vaccination development

    Amphiphilic block copolymers from a renewable Ɛ-decalactone monomer: prediction and characterization of micellar core effects on drug encapsulation and release

    Get PDF
    Here we describe a methoxy poly(ethyleneglycol)-b-poly(ε-decalactone) (mPEG-b-PεDL) copolymer and investigate the potential of the copolymer as a vehicle for solubilisation and sustained release of indomethacin (IND). The indomethacin loading and release from mPEG-b-PεDL micelles (amorphous cores) was compared against methoxy poly(ethyleneglycol)-b-poly(ε-caprolactone)(mPEG-b-PCL) micelles (semicrystalline cores). The drug–polymer compatibility was determined through a theoretical approach to predict drug incorporation into hydrated micelles. Polymer micelles were prepared by solvent evaporation and characterised for size, morphology, indomethacin loading and release. All the formulations generated spherical micelles but significantly larger mPEG-b-PεDL micelles were observed compared to mPEG-b-PCL micelles. A higher compatibility of the drug was predicted for PCL cores based on Flory–Huggins interaction parameters (χsp) using the Hansen solubility parameter (HSP) approach, but higher measured drug loadings were found in micelles with PεDL cores compared to PCL cores. This we attribute to the higher amorphous content in the PεDL-rich regions which generated higher micellar core volumes. Drug release studies showed that the semicrystalline PCL core was able to release IND over a longer period (80% drug release in 110 h) compared to PεDL core micelles (80% drug release in 72 h)

    What's in a Sign? Trademark Law and Economic Theory

    Full text link
    Abstract: The aim of this paper is to summarise the extant theory as it relates to the economics of trademark, and to give some suggestions for further research with reference to distinct streams of literature. The proposed line of study inevitably looks at the complex relationship between signs and economics. Trademark is a sign introduced to remedy a market failure. It facilitates purchase decisions by indicating the provenance of the goods, so that consumers can identify specific quality attributes deriving from their own, or others', past experience. Trademark holders, on their part, have an incentive to invest in quality because they will be able to reap the benefits in terms of reputation. In other words, trademark law becomes an economic device which, opportunely designed, can produce incentives for maximising market efficiency. This role must, of course, be recognised, as a vast body of literature has done, with its many positive economic consequences. Nevertheless, trademark appears to have additional economic effects that should be properly recognized: it can determine the promotion of market power and the emergence of rent-seeking behaviours. It gives birth to an idiosyncratic economics of signs where very strong protection tends to be assured, even though the welfare effects are as yet poorly understood. In this domain much remains to be done and the challenge to researchers is open

    Formar bem as mães para criar e educar boas crianças: as revistas portuguesas de educação familiar e a difusão da maternidade científica (1945-1958)

    Get PDF
    Este artigo tem como principal objetivo contribuir para a compreensão do processo de construção da maternidade científica em Portugal. Neste sentido, foi analisado um conjunto de artigos (n=628), publicados em revistas de educação familiar, entre 1945 e 1958. A análise realizada permitiu compreender que as revistas analisadas contribuem para a difusão da maternidade científica, ou seja, da ideia de que a aquisição de conhecimento científico sobre a criação e educação das crianças é elemento indispensável ao adequado exercício da função maternal. Observou-se, ainda, a existência de diferentes estratégias de educação para a maternidade, às quais está subjacente um elemento de classe, assim como diferentes níveis de adesão, por parte das mulheres, à concepção de maternidade científica

    The Brazilian Registry of Adult Patient Undergoing Cardiovascular Surgery, the BYPASS Project: Results of the First 1,722 Patients

    Get PDF
    Objective: To report the early results of the BYPASS project - the Brazilian registrY of adult Patient undergoing cArdiovaScular Surgery - a national, observational, prospective, and longitudinal follow-up registry, aiming to chart a profile of patients undergoing cardiovascular surgery in Brazil, assessing the data harvested from the initial 1,722 patients. Methods: Data collection involved institutions throughout the whole country, comprising 17 centers in 4 regions: Southeast (8), Northeast (5), South (3), and Center-West (1). The study population consists of patients over 18 years of age, and the types of operations recorded were: coronary artery bypass graft (CABG), mitral valve, aortic valve (either conventional or transcatheter), surgical correction of atrial fibrillation, cardiac transplantation, mechanical circulatory support and congenital heart diseases in adults. Results: 83.1% of patients came from the public health system (SUS), 9.6% from the supplemental (private insurance) healthcare systemsand 7.3% from private (out-of-pocket) clinic. Male patients comprised 66%, 30% were diabetics, 46% had dyslipidemia, 28% previously sustained a myocardial infarction, and 9.4% underwent prior cardiovascular surgery. Patients underwent coronary artery bypass surgery were 54.1% and 31.5% to valve surgery, either isolated or combined. The overall postoperative mortality up to the 7th postoperative day was 4%for CABG was 2.6%, and for valve operations, 4.4%. Conclusion: This first report outlines the consecution of the Brazilian surgical cardiac database, intended to serve primarily as a tool for providing information for clinical improvement and patient safety and constitute a basis for production of research protocols.Univ Fed Sao Paulo UNIFESP EPM, Hosp Sao Paulo, Sao Paulo, SP, BrazilHosp Caridade Sao Vicente Paulo, Jundiai, SP, BrazilInst Med Integral Prof Fernando Figueira IMIP, Recife, PE, BrazilHosp Base FUNFARME & FAMERP, Sao Jose Do Rio Preto, SP, BrazilIMC, Sao Jose Do Rio Preto, SP, BrazilIrmandade Santa Casa Sao Paulo INCT HPV, Fac Ciencias Med Santa Casa Sao Paulo, Sao Paulo, SP, BrazilFundacao Univ Cardiol, Inst Cardiol Rio Grande do Sul, Porto Alegre, RS, BrazilInst Coracao Natal, Natal, RN, BrazilInst Cardiol Dist Fed, Brasilia, DF, BrazilUniv Fed Maranhao HU UFMA, Univ Hosp, Sao Luis, MA, BrazilHosp Evangelico, Cachoeiro De Itapemirim, ES, BrazilHosp Coracao Sergipe, Aracaju, SE, BrazilHosp Nossa Senhora Salete, Inst Cirurgia Cardiovasc ICCV, Cascavel, PR, BrazilHosp Wilson Rosado, Mossoro, RN, BrazilHosp Bosque Saude, Sao Paulo, SP, BrazilHosp Univ Santa Maria, Santa Maria, RS, BrazilHosp Coracao HCor, Sao Paulo, SP, BrazilHosp Coracao IP HCor, Ins Pesquisa, Sao Paulo, SP, BrazilInst Coracao InCor, Sao Paulo, SP, BrazilUniv Fed Sao Paulo UNIFESP EPM, Hosp Sao Paulo, Sao Paulo, SP, BrazilWeb of Scienc

    Identification of Hyaloperonospora arabidopsidis Transcript Sequences Expressed during Infection Reveals Isolate-Specific Effectors

    Get PDF
    Biotrophic plant pathogens secrete effector proteins that are important for infection of the host. The aim of this study was to identify effectors of the downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa) that are expressed during infection of its natural host Arabidopsis thaliana. Infection-related transcripts were identified from Expressed Sequence Tags (ESTs) derived from leaves of the susceptible Arabidopsis Ws eds1-1 mutant inoculated with the highly virulent Hpa isolate Waco9. Assembly of 6364 ESTs yielded 3729 unigenes, of which 2164 were Hpa-derived. From the translated Hpa unigenes, 198 predicted secreted proteins were identified. Of these, 75 were found to be Hpa-specific and six isolate Waco9-specific. Among 42 putative effectors identified there were three Elicitin-like proteins, 16 Cysteine-rich proteins and 18 host-translocated RXLR effectors. Sequencing of alleles in different Hpa isolates revealed that five RXLR genes show signatures of diversifying selection. Thus, EST analysis of Hpa-infected Arabidopsis is proving to be a powerful method for identifying pathogen effector candidates expressed during infection. Delivery of the Waco9-specific protein RXLR29 in planta revealed that this effector can suppress PAMP-triggered immunity and enhance disease susceptibility. We propose that differences in host colonization can be conditioned by isolate-specific effectors

    Nightside condensation of iron in an ultra-hot giant exoplanet

    Get PDF
    Ultra-hot giant exoplanets receive thousands of times Earth's insolation. Their high-temperature atmospheres (>2,000 K) are ideal laboratories for studying extreme planetary climates and chemistry. Daysides are predicted to be cloud-free, dominated by atomic species and substantially hotter than nightsides. Atoms are expected to recombine into molecules over the nightside, resulting in different day-night chemistry. While metallic elements and a large temperature contrast have been observed, no chemical gradient has been measured across the surface of such an exoplanet. Different atmospheric chemistry between the day-to-night ("evening") and night-to-day ("morning") terminators could, however, be revealed as an asymmetric absorption signature during transit. Here, we report the detection of an asymmetric atmospheric signature in the ultra-hot exoplanet WASP-76b. We spectrally and temporally resolve this signature thanks to the combination of high-dispersion spectroscopy with a large photon-collecting area. The absorption signal, attributed to neutral iron, is blueshifted by -11+/-0.7 km s-1 on the trailing limb, which can be explained by a combination of planetary rotation and wind blowing from the hot dayside. In contrast, no signal arises from the nightside close to the morning terminator, showing that atomic iron is not absorbing starlight there. Iron must thus condense during its journey across the nightside.Comment: Published in Nature (Accepted on 24 January 2020.) 33 pages, 11 figures, 3 table
    corecore