46 research outputs found

    Structural Alterations from Multiple Displacement Amplification of a Human Genome Revealed by Mate-Pair Sequencing

    Get PDF
    Comprehensive identification of the acquired mutations that cause common cancers will require genomic analyses of large sets of tumor samples. Typically, the tissue material available from tumor specimens is limited, which creates a demand for accurate template amplification. We therefore evaluated whether phi29-mediated whole genome amplification introduces false positive structural mutations by massive mate-pair sequencing of a normal human genome before and after such amplification. Multiple displacement amplification led to a decrease in clone coverage and an increase by two orders of magnitude in the prevalence of inversions, but did not increase the prevalence of translocations. While multiple strand displacement amplification may find uses in translocation analyses, it is likely that alternative amplification strategies need to be developed to meet the demands of cancer genomics

    Ferredoxin containing bacteriocins suggest a novel mechanism of iron uptake in <i>Pectobacterium spp</i>

    Get PDF
    In order to kill competing strains of the same or closely related bacterial species, many bacteria produce potent narrow-spectrum protein antibiotics known as bacteriocins. Two sequenced strains of the phytopathogenic bacterium &lt;i&gt;Pectobacterium carotovorum&lt;/i&gt; carry genes encoding putative bacteriocins which have seemingly evolved through a recombination event to encode proteins containing an N-terminal domain with extensive similarity to a [2Fe-2S] plant ferredoxin and a C-terminal colicin M-like catalytic domain. In this work, we show that these genes encode active bacteriocins, pectocin M1 and M2, which target strains of &lt;i&gt;Pectobacterium carotovorum&lt;/i&gt; and &lt;i&gt;Pectobacterium atrosepticum&lt;/i&gt; with increased potency under iron limiting conditions. The activity of pectocin M1 and M2 can be inhibited by the addition of spinach ferredoxin, indicating that the ferredoxin domain of these proteins acts as a receptor binding domain. This effect is not observed with the mammalian ferredoxin protein adrenodoxin, indicating that &lt;i&gt;Pectobacterium spp.&lt;/i&gt; carries a specific receptor for plant ferredoxins and that these plant pathogens may acquire iron from the host through the uptake of ferredoxin. In further support of this hypothesis we show that the growth of strains of &lt;i&gt;Pectobacterium carotovorum&lt;/i&gt; and &lt;i&gt;atrosepticum&lt;/i&gt; that are not sensitive to the cytotoxic effects of pectocin M1 is enhanced in the presence of pectocin M1 and M2 under iron limiting conditions. A similar growth enhancement under iron limiting conditions is observed with spinach ferrodoxin, but not with adrenodoxin. Our data indicate that pectocin M1 and M2 have evolved to parasitise an existing iron uptake pathway by using a ferredoxin-containing receptor binding domain as a Trojan horse to gain entry into susceptible cells

    The breast cancer somatic 'muta-ome': tackling the complexity

    Get PDF
    Acquired somatic mutations are responsible for approximately 90% of breast tumours. However, only one somatic aberration, amplification of the HER2 locus, is currently used to define a clinical subtype, one that accounts for approximately 10% to 15% of breast tumours. In recent years, a number of mutational profiling studies have attempted to further identify clinically relevant mutations. While these studies have confirmed the oncogenic or tumour suppressor role of many known suspects, they have exposed complexity as a main feature of the breast cancer mutational landscape (the 'muta-ome'). The two defining features of this complexity are (a) a surprising richness of low-frequency mutants contrasting with the relative rarity of high-frequency events and (b) the relatively large number of somatic genomic aberrations (approximately 20 to 50) driving an average tumour. Structural features of this complex landscape have begun to emerge from follow-up studies that have tackled the complexity by integrating the spectrum of genomic mutations with a variety of complementary biological knowledge databases. Among these structural features are the growing links between somatic gene disruptions and those conferring breast cancer risk, mutually exclusive coexistence and synergistic mutational patterns, and a clearly non-random distribution of mutations implicating specific molecular pathways in breast tumour initiation and progression. Recognising that a shift from a gene-centric to a pathway-centric approach is necessary, we envisage that further progress in identifying clinically relevant genomic aberration patterns and associated breast cancer subtypes will require not only multi-dimensional integrative analyses that combine mutational and functional profiles, but also larger profiling studies that use second- and third-generation sequencing technologies in order to fill out the important gaps in the current mutational landscape

    Evaluation of the current knowledge limitations in breast cancer research: a gap analysis

    Get PDF
    BACKGROUND A gap analysis was conducted to determine which areas of breast cancer research, if targeted by researchers and funding bodies, could produce the greatest impact on patients. METHODS Fifty-six Breast Cancer Campaign grant holders and prominent UK breast cancer researchers participated in a gap analysis of current breast cancer research. Before, during and following the meeting, groups in seven key research areas participated in cycles of presentation, literature review and discussion. Summary papers were prepared by each group and collated into this position paper highlighting the research gaps, with recommendations for action. RESULTS Gaps were identified in all seven themes. General barriers to progress were lack of financial and practical resources, and poor collaboration between disciplines. Critical gaps in each theme included: (1) genetics (knowledge of genetic changes, their effects and interactions); (2) initiation of breast cancer (how developmental signalling pathways cause ductal elongation and branching at the cellular level and influence stem cell dynamics, and how their disruption initiates tumour formation); (3) progression of breast cancer (deciphering the intracellular and extracellular regulators of early progression, tumour growth, angiogenesis and metastasis); (4) therapies and targets (understanding who develops advanced disease); (5) disease markers (incorporating intelligent trial design into all studies to ensure new treatments are tested in patient groups stratified using biomarkers); (6) prevention (strategies to prevent oestrogen-receptor negative tumours and the long-term effects of chemoprevention for oestrogen-receptor positive tumours); (7) psychosocial aspects of cancer (the use of appropriate psychosocial interventions, and the personal impact of all stages of the disease among patients from a range of ethnic and demographic backgrounds). CONCLUSION Through recommendations to address these gaps with future research, the long-term benefits to patients will include: better estimation of risk in families with breast cancer and strategies to reduce risk; better prediction of drug response and patient prognosis; improved tailoring of treatments to patient subgroups and development of new therapeutic approaches; earlier initiation of treatment; more effective use of resources for screening populations; and an enhanced experience for people with or at risk of breast cancer and their families. The challenge to funding bodies and researchers in all disciplines is to focus on these gaps and to drive advances in knowledge into improvements in patient care

    Core module biomarker identification with network exploration for breast cancer metastasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a complex disease, the expression of many genes can be significantly altered, leading to the appearance of a differentially expressed "disease module". Some of these genes directly correspond to the disease phenotype, (i.e. "driver" genes), while others represent closely-related first-degree neighbours in gene interaction space. The remaining genes consist of further removed "passenger" genes, which are often not directly related to the original cause of the disease. For prognostic and diagnostic purposes, it is crucial to be able to separate the group of "driver" genes and their first-degree neighbours, (i.e. "core module") from the general "disease module".</p> <p>Results</p> <p>We have developed COMBINER: COre Module Biomarker Identification with Network ExploRation. COMBINER is a novel pathway-based approach for selecting highly reproducible discriminative biomarkers. We applied COMBINER to three benchmark breast cancer datasets for identifying prognostic biomarkers. COMBINER-derived biomarkers exhibited 10-fold higher reproducibility than other methods, with up to 30-fold greater enrichment for known cancer-related genes, and 4-fold enrichment for known breast cancer susceptible genes. More than 50% and 40% of the resulting biomarkers were cancer and breast cancer specific, respectively. The identified modules were overlaid onto a map of intracellular pathways that comprehensively highlighted the hallmarks of cancer. Furthermore, we constructed a global regulatory network intertwining several functional clusters and uncovered 13 confident "driver" genes of breast cancer metastasis.</p> <p>Conclusions</p> <p>COMBINER can efficiently and robustly identify disease core module genes and construct their associated regulatory network. In the same way, it is potentially applicable in the characterization of any disease that can be probed with microarrays.</p

    Quorum Sensing Signaling Molecules Produced by Reference and Emerging Soft-Rot Bacteria (Dickeya and Pectobacterium spp.)

    Get PDF
    International audienceBACKGROUND: Several small diffusible molecules are involved in bacterial quorum sensing and virulence. The production of autoinducers-1 and -2, quinolone, indole and γ-amino butyrate signaling molecules was investigated in a set of soft-rot bacteria belonging to six Dickeya or Pectobacterium species including recent or emerging potato isolates. METHODOLOGY/PRINCIPAL FINDINGS: Using bacterial biosensors, immunoassay, and chromatographic analysis, we showed that soft-rot bacteria have the common ability to produce transiently during their exponential phase of growth the N-3-oxo-hexanoyl- or the N-3-oxo-octanoyl-l-homoserine lactones and a molecule of the autoinducer-2 family. Dickeya spp. produced in addition the indole-3-acetic acid in tryptophan-rich conditions. All these signaling molecules have been identified for the first time in the novel Dickeya solani species. In contrast, quinolone and γ-amino butyrate signals were not identified and the corresponding synthases are not present in the available genomes of soft-rot bacteria. To determine if the variations of signal production according to growth phase could result from expression modifications of the corresponding synthase gene, the respective mRNA levels were estimated by reverse transcriptase-PCR. While the N-acyl-homoserine lactone production is systematically correlated to the synthase expression, that of the autoinducer-2 follows the expression of an enzyme upstream in the activated methyl cycle and providing its precursor, rather than the expression of its own synthase. CONCLUSIONS/SIGNIFICANCE: Despite sharing the S-adenosylmethionine precursor, no strong link was detected between the production kinetics or metabolic pathways of autoinducers-1 and -2. In contrast, the signaling pathway of autoinducer-2 seems to be switched off by the indole-3-acetic acid pathway under tryptophan control. It therefore appears that the two genera of soft-rot bacteria have similarities but also differences in the mechanisms of communication via the diffusible molecules. Our results designate autoinducer-1 lactones as the main targets for a global biocontrol of soft-rot bacteria communications, including those of emerging isolates

    Knowledge at play. Studies of games as members’ matters

    Get PDF
    On a general level, this thesis seeks some answers to the broad question of what one can learn from digital games. With an analytical approach informed by ethnomethodology, the main thrust of the work is an exploration of members’ matters in the area of games and gaming. In response to prevailing discussions about how, where and what gamers learn, the aim is to examine emerging forms of knowledge embedded in practices in and around digital games. The first part of the thesis addresses three themes: the question of whether leisure gaming could be understood to have transfer effects; how games are positioned in a state of restlessness and multistableness; and how the domain encompassing gaming and game development is advancing in terms of professionalization and institutionalization. The second part is comprised of three empirical studies based on two sets of video recordings: collaborative gaming in The Lord of the Rings Online, and assessment practices in game development education. The studies begin to unravel the elusive phenomena of gaming by making some gameplay practices and conventions visible. For instance, the findings suggest that there are specialized coordination practices, developed through long-term engagement with the online game. Furthermore, from the perspective of the institutional framing, it is argued that understandings from other media are not applicable in a straightforward manner, but must be carefully calibrated to matters such as game genre conventions and control over gameplay conduct. By describing the reasoning and knowledge displayed by gamers and game developers, the thesis contributes to interrelated discussions about knowledge development, currently carried out in educational science, interaction studies and game studies. In conclusion, it is suggested that digital games are establishing autonomy from other forms of entertainment media and software industries as a result of the ways games and gaming as multistable objects of knowledge have become deeply embedded in society
    corecore