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OPINION
The multitude of molecular analyses in cancer:
the opening of Pandora’s box
Hege G Russnes1,2,3, Per E Lønning4,5, Anne-Lise Børresen-Dale1,3* and Ole C Lingjærde3,6
Abstract

The availability of large amounts of molecular data of unprecedented depth and width has instigated new paths of
interdisciplinary activity in cancer research. Translation of such information to allow its optimal use in cancer
therapy will require molecular biologists to embrace statistical and computational concepts and models.
Progress in science has been and should be driven by our innate curiosity. This is the human quality that led
Pandora to open the forbidden box, and like her, we do not know the nature or consequences of the output
resulting from our actions. Throughout history, ground-breaking scientific achievements have been closely linked to
advances in technology. The microscope and the telescope are examples of inventions that profoundly increased
the amount of observable features that further led to paradigmatic shifts in our understanding of life and the
Universe. In cell biology, the microscope revealed details of different types of tissue and their cellular composition; it
revealed cells, their structures and their ability to divide, develop and die. Further, the molecular compositions of
individual cell types were revealed gradually by generations of scientists. For each level of insight gained, new
mathematical and statistical descriptive and analytical tools were needed (Figure 1a). The integration of knowledge
of ever-increasing depth and width in order to develop useful therapies that can prevent and cure diseases such as
cancer will continue to require the joint effort of scientists in biology, medicine, statistics, mathematics and
computation.
Here, we discuss some major challenges that lie ahead of us and why we believe that a deeper integration of
biology and medicine with mathematics and statistics is required to gain the most from the diverse and
extensive body of data now being generated. We also argue that to take full advantage of current technological
opportunities, we must explore biomarkers using clinical studies that are optimally designed for this purpose.
The need for a tight interdisciplinary collaboration has never been stronger.
Decomposing tumors into cell types and
molecular alterations
Neoplastic transformation can start in nearly every cell
type in the human body. It is recognizable as cells that
have the ability to divide uncontrollably and to escape
aging mechanisms and naturally occurring cell death,
resulting in the growth of a tumor. Tumors have different
features, depending on the organ of origin and the level of
differentiation of the tumor cells. At certain points in devel-
opment, a tumor will be influencing its microenvironment,
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ensuring, among other things, vascularization and cooper-
ation with the immune system. A tumor can progress
further, evolving into malignant disease, by invading
the surrounding tissue, disseminating into the blood-
stream or lymphatic channels, and establishing metas-
tases in other parts of the body, often with fatal
consequences for the affected individual. The facets of
such transformations are linked to distinct biological
processes, but these differ according to cell type (that
is, the cell of origin), the local microenvironment, host
factors such as an individual’s genetic background and
age, and exogenous and endogenous environmental in-
fluences [1].
The diversity of cancer, in both biological and clinical
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studied. Today, with increasingly sophisticated technolo-
gies at our disposal, highly detailed molecular features of
individual tumors can be described. Such features are
often referred to as being layered, occurring at a gen-
omic (DNA) level, a transcriptomic (mRNA) level and a
functional (protein) level. The proteins are the key func-
tional elements of cells, resulting from transcription of a
gene into mRNA, which is further translated into pro-
tein. This simplistic way of describing the relationship
between the layers has gradually changed during the past
decades of functional and molecular insight. Protein syn-
thesis is no longer perceived as a linear process, but as
an intricate network of a multitude of operational mole-
cules. Astonishing progress has been made in the discov-
ery of molecules that are able to influence transcription
and translation, such as DNA-modifying enzymes and
non-translated RNAs, and of mechanisms that are able
to control the processing, localization and activation of
proteins [2,3].
A picture is emerging of individual cells within a

tumor that can differ at the genomic, epigenomic and
transcriptional levels, as well as at the functional level
[4,5]. Mutations and epigenetic alterations create the re-
quired phenotypic diversity that, under the influence of
shifting selective pressures imposed by the environment,
determines the subclonal expansion and selection of spe-
cific cells. The development of solid tumors thus follows
the same basic principles as Darwinian evolution. Most
single nucleotide polymorphism (SNP) variants that arise
in human evolution are neutral in respect to survival ad-
vantage; over a period of time, these variants are typic-
ally fixed in or die out from the genome according to
chance. Other variants provide a survival advantage [6]
and will, over time, dominate the cell population, leading
to distinct haploid signatures. Cancer may involve hun-
dreds or thousands of mutations, with each mutation
potentially contributing to tumor fitness. Most of these
mutations are assumed to be passengers, but a limited
number have driver capability, sometimes only in a sub-
population of cells [7-9].
There is an intricate interplay between subpopulations

of tumor cells and among tumor and normal cells in the
microenvironment, and tumor topology is likely to play
a role in this context. Our knowledge of molecular
mechanisms in cancer development and progression are
mainly derived from model systems such as in vitro cell
cultures and animal models, as well as from descriptive
molecular analyses of tissue samples. Model systems
have been crucial for understanding molecular interac-
tions and their implications in cancer, but they cannot
fully mimic tumor conditions in vivo. Tissue samples,
on the other hand, contain both a microenvironment
and subpopulations of cancer cells, but they represent
only a snapshot in an individual tumor’s life history.
Until recently, cancer studies mainly considered only
one or a few molecular levels at a time. Altered protein
expression can have several causes [10]; it can be due
to copy-number gain, a translocation event that com-
bines the gene with an active promoter, alteration of
factors that modify DNA or influence the transcrip-
tion machinery, or modifications of mRNA or the
protein itself. Revealing the various downstream ef-
fects of such alterations is potentially useful for tumor
classification and for prediction of treatment response and
prognosis [11].
The pathways that affect or are affected by tumor de-

velopment need to be identified, but there may be little
hope of intervening unless we know which molecular
factors control the pathways in each patient. In addition,
a key to a more fundamental understanding of the bio-
logical dynamics will be to consider tumors from a systems
biology perspective. Systems biology seeks to understand a
tumor as an interplay between various processes and exter-
nal stimuli, the ultimate goal being to predict the effect of
a perturbation of any part of the system [12]. Detailed
studies of the regulatory networks and molecular interac-
tions that take place in different types of cells under vari-
ous conditions will be crucial for understanding the
biological and clinical behavior of normal and malignant
cells. This will require analyses of both large-scale omics
data and deeply characterized data sets derived from func-
tional studies, such as those developed in the LINCS
project [13]. The importance of functional studies as a
foundation for molecular diagnostic tools has been il-
lustrated by a recent work in which a histone demethy-
lase, JARID1b, was found to have an oncogenic function
in breast cell lines that undergo luminal differentiation
[14]. The detailed multilevel alterations induced by JAR-
ID1b were analyzed in a pathway-specific manner to de-
velop a diagnostic test. The index thus designed was
applied to a breast cancer dataset that included both DNA
copy number and mRNA expression data, showing that
inferred JARID1b activity was prognostic for estrogen-
receptor-positive disease. A cell-type-specific functional
understanding of molecular alterations will be increasingly
important to improve the success of molecular assays in
clinical decision-making.

Bringing all the information together
Standard breast cancer care is primarily based on former re-
search employing clinical features, histopathology measure-
ments and analyses of a handful of molecular interactions.
Current technology allows advanced molecular characteriza-
tions of tumor samples at multiple layers and down to single
cell resolution, thus dramatically increasing the number of
measurements that can be obtained from clinical tumor
samples (Figure 1b). The wealth of data from such massive
parallel analyses represents a serious computational
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Figure 1 Multiple levels of data integration. (a) Major inventions resulting in extreme numbers of novel observations in cancer biology: the
microscope, microarray analyses and massive parallel sequencing technology. (b) The gap between current breast cancer treatment and available
molecular data. Most treatment guidelines are based on studies that analyzed a small number of measurements reflecting clinical information
(red) and histopathological features (blue). By contrast, an almost unlimited number of measurements can be obtained in multilevel molecular
analyses using, for example, microarray-based technologies or massive parallel sequencing technologies where millions of data points can be
observed simultaneously (green). miRNA, microRNA. (c) Inter-tumor heterogeneity is illustrated by these microscopic images of two tumors,
one having tumor cells with luminal differentiation and abundant stromal tissue (left) and the other having less differentiated tumor cells
and scarcely any stromal tissue (right). (d) The cellular composition of tumors shows great variation, as do the tumors themselves. Immunohistochemistry
with an antibody against the membrane protein CD44 shows both positive and negative stained tumor cells. In addition, lymphocytes in the stromal
environment are positive for this antibody.
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and interpretational challenge, but also new inferential
opportunities.
In many ways, these developments in molecular biology

reflect the progress in other natural sciences, including
chemistry, physics and astronomy. For example, as distant
astronomical objects were observed at an increasing num-
ber of wavelengths and at increasing resolution, more de-
tailed models were gradually formulated of processes that
had been visible even to Galileo, albeit at a much cruder
scale. In much the same way, the various omics data and
other molecular data now available will provide new
perspectives on known processes in a tumor and its envir-
onment, allowing more detailed pictures to be drawn. The
complexity of the biological system does not increase, only
our ability to observe it and to build realistic models and
make useful predictions.
Facing these challenges sometimes requires the re-

thinking or extension of well-established concepts and
procedures. For example, when classical statistical hy-
pothesis testing is applied to thousands of cases simul-
taneously, inaccurate specification of the null model can
result in severe over- or under-reporting of significant
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cases. The very fact that many tests are performed in
parallel, however, allows the null model to be empirically
determined and thus corrected [15]. Another example
concerns the determination of the significance threshold
(the threshold used to decide whether a P-value is small
enough to reject the null hypothesis) when many hy-
pothesis tests are being performed and the benefit of de-
tecting many real effects can justify a small proportion
of false positives, a problem for which the false discovery
rate (FDR) was invented [16].
Gaining the most from the rapidly growing flow of in-

formation is an intellectual enterprise as much as it is a
technical one. Even the most skilled molecular biologist
can no longer see the full consequences for existing hy-
potheses of a new piece of information, unless practical
mechanisms are in place to assimilate and eventually in-
tegrate the new information with the wealth of existing
knowledge. This will require extensive data sharing, more
sophisticated statistical and bioinformatical tools for inte-
grative analyses, mechanisms that promote shared ana-
lyses, and increasing computing power (see [17] and
references therein). In addition, we need novel strategies
for sharing hypotheses and models - an equivalent of the
physicists’ standard model, which represents a common
reference that novel results can be confronted with and
challenge.
To achieve this goal, deeper integration between

biology, mathematics and statistics should be sought
by developing practical and sufficiently general frame-
works for the formulation and testing of complex bio-
logical hypotheses. The benefits of having such frameworks
are likely to grow rapidly as the complexity of observations
and models increases. In addition, it will be important
to be able to share analyses publicly in a standardized
fashion; this is a serious challenge when the analysis is
based on multiple tools running on different comput-
ing platforms, and both the tools and the platforms are
subject to regular updates and dependencies on exter-
nal data sources. Low-dimensional representations of
biological systems, that is, representations that can be
mathematically described using a small number of var-
iables (5 to 10 or fewer), are also likely to play an im-
portant role in the future; if nothing else, they appeal
to our intuition and ability to think conceptually. With
more data and more molecular levels available, how-
ever, the low-dimensional representation (projection)
can be judiciously selected to reflect the most relevant
properties of the processes governing the behavior of
the system under study. The rapid growth in comput-
ing power, novel statistical methodologies and compu-
tational tools that can handle datasets of increasing
size and complexity gives further cause for optimism.
As Galileo needed mathematics to describe and inter-
pret his observations, today we need the theory and
tools of mathematics and statistics to develop our un-
derstanding of life.

[The universe] cannot be read until we have learnt the
language and become familiar with the characters in
which it is written. It is written in mathematical
language, and the letters are triangles, circles and
other geometrical figures, without which means it is
humanly impossible to comprehend a single word.
Galileo Galilei

The question remains as to how to find the best pro-
jection in an ocean of irrelevant features that do noth-
ing but increase the dimensionality of the problem.
While most of statistics concerns some form of separ-
ation of signal from noise, the problems encountered
when thousands of variables are involved, commonly
called the curse of dimensionality, make the analysis
of such data intractable with classical statistical tech-
niques. From a geometric point of view, the main
problem is that high-dimensional spaces are very large
and the concept of localness, which is fundamental to
a wide range of statistical methods, breaks down when
they are analyzed.
The key to escaping the curse of dimensionality is,

first, the realization that the actual number of param-
eters in a model, or its degrees of freedom, can be
controlled by imposing constraints on those parame-
ters. Thus, we may include thousands of variables in a
regression model and obtain a sensible estimate, as
long as we impose appropriate restrictions on the co-
efficients to be estimated. Second, under suitable con-
ditions, such constraints have been shown to improve
the estimate in a precise statistical sense [18]. Third,
we have the practical means today to impose such
constraints in a biologically sensible way, by defining
precise assumptions (priors) on the model’s behavior
that are based on available knowledge and observa-
tions. Such priors can, for example, be used to in-
corporate spatial information, such as where in the
cell protein-protein interactions occur, or to build
into a model knowledge of specific molecular interac-
tions or functions. Knowledge that is used to define
priors can come from other molecular levels, other
patient materials, other cancer types, or normal speci-
mens [19].

From integrative models to cancer diagnostics
and treatment
Yet to us all - scientists, physicians in charge of pa-
tient care and potential cancer patients - the ultimate
question remains: how can the wealth of knowledge
that is available be translated to improved patient
treatment? For decades this question was considered
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to be an academic exercise of interest to scientists
alone, but today, translation research is recognized as
mandatory for the identification of mechanisms that
are responsible for therapy resistance. The past decade
of research has, for example, refined breast cancer
classification to include data on gene expression and
copy number alterations, and revealed the prognostic
impact of molecular-based classification [20,21]. These
examples, however, relate to prognostication: an over-
all outcome that is influenced by tumor biology and
therapy effects in a way that generally does not allow
dissection of the mechanism of sensitivity toward the
therapeutic agents employed [22]. In breast cancer,
emerging evidence suggests that tumors belonging to
the ‘basal-like’ class have a particular sensitivity for
platinum-containing compounds and in particular PARP
inhibitors. This sensitivity relates to defects in a particular
functional pathway (homologous repair) that characterizes
these tumors in individuals who carry a BRCA1 germline
mutation; these defects may also affect other tumors
within the ‘basal-like’ category [23].
Experimental evidence should be interpreted with cau-

tion; for example, the tumor suppressor gene TP53 has
been intensively studied for more than three decades,
but new evidence relating to its role in cancer is con-
tinuously emerging. The importance of different mecha-
nisms of drug action to the in vivo chemosensitivity of
pathways that are affected by the TP53 mutation re-
mains unclear (see references in [24,25]). This illustrates
the need for translational studies properly designed to
address these questions. Although the endpoint from a
therapeutic perspective is overall survival, endpoints like
relapse-free as well as overall survival need to be ad-
dressed fully in the context of large, randomized phase
III trials.
Over the past decade, studies carried out in neoadju-

vant or presurgical therapy settings have employed pa-
rameters such as a drop in the cancer antigen KI67
during the first weeks on endocrine therapy. While pa-
rameters like having a pathological complete response
or primary progression can still be used as surrogate
endpoints for long-term outcome (see discussion in
[26]), recent results [27] indicate that correlations be-
tween tumor shrinkage and long-term outcome are
not working well in all clinical settings as exemplified
by tumors in patients carrying a germline BRCA1 mu-
tation. There is a need for a systems biology approach
to identify redundant pathways [28] and, in particular,
to determine how such mechanisms may work differ-
ently in different tumor forms. These approaches must
also consider the potential impact of the microenvir-
onment on sensitivity to treatment. When adminis-
tered to breast cancer patients on endocrine treatment
or to patients harboring activating mutations in the
phosphoinositide 3-kinase (PI3K) pathway, the mam-
malian target of rapamycin (mTOR) inhibitor everoli-
mus improved outcome [29], but this drug was ineffective
among patients whose tumors harbored mutations in
redundant pathways [30]. Agents that target activating
mutations, including the BRAF oncogene, have been
shown to be highly effective in malignant melanomas;
by contrast, these same agents work poorly in meta-
static colorectal cancer because of a compensatory in-
crease of epithelial growth factor receptor (EGF-R)
activity [31]. Observations such as these should not
provoke pessimism; they merely underline the need to
implement the proper models and parameters in clin-
ical studies.
As for improving outcome, studies in which tumor tis-

sue specimens are collected before and during therapy
should continue. Novel techniques, including massive
parallel sequencing and different types of omics tech-
nologies, allow the study of tumor biomarkers in a way
we could only dream of a decade ago, and make it pos-
sible to correlate these biomarkers to tumor regression
in response to therapy. In parallel, samples must be col-
lected during large phase III trials so that, in due time,
we can develop well-annotated tumor banks that, when
combined with clinical information, will be able to con-
firm the impact of molecular-based diagnostic tests on
long-term outcome. Perhaps even more important is the
collection of repeated samples from tumor tissue and
circulating DNA during therapy to monitor clonal
changes [32].
Studies on predictive biomarkers have traditionally

measured alterations at initial diagnosis, prior to sur-
gery and compared the presence of genetic mutations
or other disturbances to clinical outcome defined by
tumor shrinkage. Implementation of massive parallel
sequencing, however, allows the estimation of bio-
markers within a clonal setting, offering a unique pos-
sibility of evaluating changes in biomarkers during the
course of therapy. For instance, if a certain gene muta-
tion is detected among 80% of all cells at the initiation
of therapy but disappears after three months of chemo-
therapy (independent of any tumor shrinkage), this
marker is associated with cells that are therapy sensi-
tive. Conversely, a biomarker identified in 10% of tumor
cells prior to therapy but among 80% after therapy may be
considered a marker of drug-resistant cells surviving ther-
apy. While the issue of tumor heterogeneity should be
taken into account, modern techniques of sampling
allow several samples to be collected in parallel in a
non-traumatic setting.
Finally, we should not forget the pathologists and

the ability of ‘the old dogs to perform their old
tricks’. Repeated histologic examinations, using tech-
niques such as fluorescence in-situ hybridization
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(FISH), are required not only in the interest of con-
firming gene amplifications and assessing intra-tumor
heterogeneity; for example, the beta-galactosidase assay
could be applied to clinical samples to assess the potential
importance of senescence (as outlined in animal models)
to chemotherapy efficacy in human tumors [33].
The spirit of hope
Understanding the biological mechanisms behind can-
cer requires the ability to identify biological processes
in individual tumors and within the different cell types
(Figure 1c,d), as well as to integrate a multitude of ob-
servations made at several molecular levels. It is an
overwhelming task, but one that needs to be pursued
along with the development of novel ways of combin-
ing and integrating scientific evidence across several
molecular levels, study cohorts of various designs (ad-
juvant and neoadjuvant), many research groups and
different diseases. Here, the novel developments in
large-scale statistical inference and the empirical Bayes
approach, which unifies aspects of the frequentist and
Bayesian philosophies (Box 1), are likely to play a
major role in the years to come.
Box 1: Frequentist versus Bayesian philosophies

The frequentist approach to statistics considers the

probability of an event to be the relative frequency of that

event in a large number of trials. According to this view, a

statistical hypothesis is fixed and cannot be assigned a

probability, while the data used to test it are considered to

be random. The Bayesian approach to statistics views

probabilities as quantities reflecting states of knowledge or

belief, and probabilities can be assigned to statistical

hypotheses. To determine the credibility of a null hypothesis,

a frequentist would calculate the probability of the observed

data given the hypothesis, whereas a Bayesian would

calculate the probability of the hypothesis given the data.

Empirical Bayes combines elements of the Bayesian and

frequentist points of view by allowing the priors used in Bayes

analysis to be estimated from the data. Conceived of more than

60 years ago, it is only now, with the current generation of data

sets involving a huge number of parallel experiments, that the

full force of empirical Bayes is brought to bear. By offering the

opportunity to build realistic, data-based biological assumptions

into our statistical models, empirical Bayes will be a valuable

tool for developing the next generation of integrative analysis

methods.
Pandora opened her box impelled by her curiosity.
What was left in Pandora’s box was the Spirit of Hope.
In our context, this is the development of novel compu-
tational approaches, statistics and models combined with
the ongoing pursuit of characterizing cancers of all dif-
ferent types and stages. The field would be well served
by a concerted world-wide effort to make molecular pro-
files, associated clinical or biological data and analytics
publicly available in standardized fashion that facilitates
the development of analytics. Closer ties should be
forged between biology, mathematics and statistics, thus
moving away from the concept of applying mathematical
and statistical tools to solve specialized tasks and to-
wards a common interdisciplinary framework for ex-
pressing and testing biological hypotheses and models.
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