478 research outputs found

    Perceptions and experiences with eating disorder treatment in the first year of COVID-19: A longitudinal qualitative analysis

    Get PDF
    Objective: The COVID-19 pandemic created significant challenges in accessing and receiving treatment for individuals with eating disorders (EDs). The purpose of this study is to explore perceptions of and experiences with ED treatment during the first year of the pandemic among individuals with past and self-reported EDs in the United States. Methods: Online surveys were administered to adults (N = 510) with a past or current self-reported ED at 13 timepoints between April 2020 and May 2021. Using longitudinal qualitative analysis, 5651 free-text responses were examined to capture experiences with ED treatment and generate inferences of change over time. Results: We categorized results into four sequential, temporal quarters and identified patterns that explained participants' perceptions of facilitators, barriers, and experiences with ED treatment over time: Quarter 1. Treatment Disruption and Reorienting Recovery; Quarter 2. Accumulating COVID-19 Stress and Virtual Treatment Woes; Quarter 3. A Continuation of Inadequate Care; and Quarter 4. Ongoing Adaptation and Adjustment to Uncertainty. Participant experiences were marked by numerous barriers to accessing care, challenges adjusting to virtual treatment, unmet treatment needs, and beginning acceptance of telehealth. Discussion: Our findings present a timeline to help evaluate challenges related to navigating the switch to virtual care which created significant disruption to ED recovery. Participants spent much of the first year trying to adjust to unemployment, loss of insurance, and lack of access to in-person treatment. Future research should identify additional strategies to improve the receipt and experience of care for EDs. Public Significance: Our findings suggest that individuals with eating disorders were significantly challenged by accumulating COVID-19 stress, worsening symptomatology, and limited access to effective treatment during the first year of the pandemic. This knowledge can guide clinicians, treatment centers, and policy makers in addressing the behavioral health needs of individuals impacted by disordered eating amidst emergent public health crises

    Current reversal with type-I intermittency in deterministic inertia ratchets

    Full text link
    The intermittency is investigated when the current reversal occurs in a deterministic inertia ratchet system. To determine which type the intermittency belongs to, we obtain the return map of velocities of particle using stroboscopic recording, and numerically calculate the distribution of average laminar length {}. The distribution follows the scaling law of ϵ1/2{} \propto {\epsilon}^{-1/2}, the characteristic relation of type-I intermittency.Comment: 4 pages, 7 figure

    Mass-renormalized electronic excitations at (π\pi, 0) in the superconducting state of Bi2Sr2CaCu2O8+δBi_{2}Sr_{2}CaCu_{2}O_{8+\delta}

    Full text link
    Using high-resolution angle-resolved photoemission spectroscopy on Bi2Sr2CaCu2O8+δBi_{2}Sr_{2}CaCu_{2}O_{8+\delta}, we have made the first observation of a mass renormalization or "kink" in the E vs. k\vec k dispersion relation localized near (π,0)(\pi, 0). Compared to the kink observed along the nodal direction, this new effect is clearly stronger, appears at a lower energy near 40 meV, and is only present in the superconducting state. The kink energy scale defines a cutoff below which well-defined quasiparticle excitations occur. This effect is likely due to coupling to a bosonic excitation, with the most plausible candidate being the magnetic resonance mode observed in inelastic neutron scattering

    Spin-Charge Separation in the tJt-J Model: Magnetic and Transport Anomalies

    Full text link
    A real spin-charge separation scheme is found based on a saddle-point state of the tJt-J model. In the one-dimensional (1D) case, such a saddle-point reproduces the correct asymptotic correlations at the strong-coupling fixed-point of the model. In the two-dimensional (2D) case, the transverse gauge field confining spinon and holon is shown to be gapped at {\em finite doping} so that a spin-charge deconfinement is obtained for its first time in 2D. The gap in the gauge fluctuation disappears at half-filling limit, where a long-range antiferromagnetic order is recovered at zero temperature and spinons become confined. The most interesting features of spin dynamics and transport are exhibited at finite doping where exotic {\em residual} couplings between spin and charge degrees of freedom lead to systematic anomalies with regard to a Fermi-liquid system. In spin dynamics, a commensurate antiferromagnetic fluctuation with a small, doping-dependent energy scale is found, which is characterized in momentum space by a Gaussian peak at (π/a\pi/a, π/a \pi/a) with a doping-dependent width (δ\propto \sqrt{\delta}, δ\delta is the doping concentration). This commensurate magnetic fluctuation contributes a non-Korringa behavior for the NMR spin-lattice relaxation rate. There also exits a characteristic temperature scale below which a pseudogap behavior appears in the spin dynamics. Furthermore, an incommensurate magnetic fluctuation is also obtained at a {\em finite} energy regime. In transport, a strong short-range phase interference leads to an effective holon Lagrangian which can give rise to a series of interesting phenomena including linear-TT resistivity and T2T^2 Hall-angle. We discuss the striking similarities of these theoretical features with those found in the high-TcT_c cuprates and give aComment: 70 pages, RevTex, hard copies of 7 figures available upon request; minor revisions in the text and references have been made; To be published in July 1 issue of Phys. Rev. B52, (1995

    Intrauterine devices and endometrial cancer risk : a pooled analysis of the Epidemiology of Endometrial Cancer Consortium

    Get PDF
    Intrauterine devices (IUDs), long-acting and reversible contraceptives, induce a number of immunological and biochemical changes in the uterine environment that could affect endometrial cancer (EC) risk. We addressed this relationship through a pooled analysis of data collected in the Epidemiology of Endometrial Cancer Consortium. We combined individual-level data from 4 cohort and 14 case-control studies, in total 8,801 EC cases and 15,357 controls. Using multivariable logistic regression, we estimated pooled odds ratios (pooled-ORs) and 95% confidence intervals (CIs) for EC risk associated with ever use, type of device, ages at first and last use, duration of use and time since last use, stratified by study and adjusted for confounders. Ever use of IUDs was inversely related to EC risk (pooled-OR = 0.81, 95% CI = 0.74-0.90). Compared with never use, reduced risk of EC was observed for inert IUDs (pooled-OR = 0.69, 95% CI = 0.58-0.82), older age at first use (≥35 years pooled-OR = 0.53, 95% CI = 0.43-0.67), older age at last use (≥45 years pooled-OR = 0.60, 95% CI = 0.50-0.72), longer duration of use (≥10 years pooled-OR = 0.61, 95% CI = 0.52-0.71) and recent use (within 1 year of study entry pooled-OR = 0.39, 95% CI = 0.30-0.49). Future studies are needed to assess the respective roles of detection biases and biologic effects related to foreign body responses in the endometrium, heavier bleeding (and increased clearance of carcinogenic cells) and localized hormonal changes

    Identification of clonal hematopoiesis mutations in solid tumor patients undergoing unpaired next-generation sequencing assays

    Get PDF
    Purpose: In this era of precision-based medicine, for optimal patient care, results reported from commercial next-generation sequencing (NGS) assays should adequately reflect the burden of somatic mutations in the tumor being sequenced. Here, we sought to determine the prevalence of clonal hematopoiesis leading to possible misattribution of tumor mutation calls on unpaired Foundation Medicine NGS assays. Experimental Design: This was a retrospective cohort study of individuals undergoing NGS of solid tumors from two large cancer centers. We identified and quantified mutations in genes known to be frequently altered in clonal hematopoiesis (DNMT3A, TET2, ASXL1, TP53, ATM, CHEK2, SF3B1, CBL, JAK2) that were returned to physicians on clinical Foundation Medicine reports. For a subset of patients, we explored the frequency of true clonal hematopoiesis by comparing mutations on Foundation Medicine reports with matched blood sequencing. Results: Mutations in genes that are frequently altered in clonal hematopoiesis were identified in 65% (1,139/1,757) of patients undergoing NGS. When excluding TP53, which is often mutated in solid tumors, these events were still seen in 35% (619/1,757) of patients. Utilizing paired blood specimens, we were able to confirm that 8% (18/226) of mutations reported in these genes were true clonal hematopoiesis events. The majority of DNMT3A mutations (64%, 7/11) and minority of TP53 mutations (4%, 2/50) were clonal hematopoiesis. Conclusions: Clonal hematopoiesis mutations are commonly reported on unpaired NGS testing. It is important to recognize clonal hematopoiesis as a possible cause of misattribution of mutation origin when applying NGS findings to a patient's care

    Physics of Solar Prominences: I - Spectral Diagnostics and Non-LTE Modelling

    Full text link
    This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (ie when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex non-LTE models become necessary. We thus present the basics of non-LTE radiative transfer theory and the associated multi-level radiative transfer problems. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. We then discuss the energy balance in various prominence models. Finally, we outline the outstanding observational and theoretical questions, and the directions for future progress in our understanding of solar prominences.Comment: 96 pages, 37 figures, Space Science Reviews. Some figures may have a better resolution in the published version. New version reflects minor changes brought after proof editin

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Common variations in estrogen-related genes are associated with severe large-joint osteoarthritis: a multicenter genetic and functional study

    Get PDF
    OBJECTIVE: Several lines of evidence suggest that estrogens influence the development of osteoarthritis (OA). The aim of this study was to explore the association of two common polymorphisms within the aromatase (CYP19A1) and estrogen receptor (ER) alpha (ESR1) genes with severe OA of the lower limbs. METHODS: The rs1062033 (CYP19A1) and rs2234693 (ESR1) single nucleotide polymorphisms were genotyped in 5528 individuals (3147 patients with severe hip or knee OA, and 2381 controls) from four centres in Spain and the United Kingdom. Gene expression was measured in femoral bone samples from a group of patients. RESULTS: In the global analysis, both polymorphisms were associated with OA, but there was a significant sex interaction. The GG genotype at rs1062033 was associated with an increased risk of knee OA in women [odds ratio (OR) 1.23; P=0.04]. The CC genotype at rs2234693 tended to be associated with reduced OA risk in women (OR 0.76, P=0.028, for knee OA; OR=0.84, P=0.076 for hip OA), but with increased risk of hip OA in men (OR 1.28; P=0.029). Women with unfavourable genotypes at both loci had an OR of 1.61 for knee OA (P=0.006). The rs1062033 genotype associated with higher OA risk was also associated with reduced expression of the aromatase gene in bone. CONCLUSIONS: Common genetic variations of the aromatase and ER genes are associated with the risk of severe OA of the large joints of the lower limb in a sex-specific manner. These results are consistent with the hypothesis that estrogen activity may influence the development of large-joint OA
    corecore