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Abstract

Purpose: In this era of precision-based medicine, for optimal patient care, results reported from 

commercial next-generation sequencing (NGS) assays should adequately reflect the burden of 

somatic mutations in the tumor being sequenced. Here, we sought to determine the prevalence of 

clonal hematopoiesis leading to possible misattribution of tumor mutation calls on unpaired 

Foundation Medicine NGS assays.

Experimental Design: This was a retrospective cohort study of individuals undergoing NGS of 

solid tumors from two large cancer centers. We identified and quantified mutations in genes 

known to be frequently altered in clonal hematopoiesis (DNMT3A, TET2, ASXL1, TP53, ATM, 
CHEK2, SF3B1, CBL, JAK2) that were returned to physicians on clinical Foundation Medicine 

reports. For a subset of patients, we explored the frequency of true clonal hematopoiesis by 

comparing mutations on Foundation Medicine reports with matched blood sequencing.

Results: Mutations in genes that are frequently altered in clonal hematopoiesis were identified in 

65% (1,139/1,757) of patients undergoing NGS. When excluding TP53, which is often mutated in 

solid tumors, these events were still seen in 35% (619/1,757) of patients. Utilizing paired blood 

specimens, we were able to confirm that 8% (18/226) of mutations reported in these genes were 

true clonal hematopoiesis events. The majority of DNMT3A mutations (64%, 7/11) and minority 

of TP53 mutations (4%, 2/50) were clonal hematopoiesis.

Conclusions: Clonal hematopoiesis mutations are commonly reported on unpaired NGS testing. 

It is important to recognize clonal hematopoiesis as a possible cause of misattribution of mutation 

origin when applying NGS findings to a patient’s care.

Introduction

Precision medicine has led to improved prognostication and therapeutic selection in 

oncology (1); however, an ongoing challenge is uncertainty that clinically relevant tumor-

associated mutations are exclusively reported. Because of complexities in variant calling and 

scarcity of variant-specific clinical data for most cancers, commercial next-generation 

sequencing (NGS) assays often report discordant interpretations of NGS data, exemplified 

by recent articles (2, 3). Furthermore, many NGS platforms sequence tumors without a 

paired normal sample, which reduces cost and obviates issues associated with reporting 

germline variants (4), but can exacerbate challenges when adjudicating mutations as somatic 
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or germline. Here, we explore another challenge associated with somatic mutation calling. 

Given the recent recognition of clonal hematopoiesis in patients with cancer (5), we 

hypothesized that admixed leukocytes contained within solid tumor biopsies may result in 

identification of clonal hematopoiesis on NGS assays, thus confounding clinical decision-

making. We used matched solid tumor and blood sequencing to explore the prevalence of 

clonal hematopoiesis detection on a commonly utilized commercial NGS assay (Foundation 

Medicine; FM).

Materials and Methods

Patients

This study was approved by the institutional review boards (IRB) at the University of North 

Carolina at Chapel Hill (UNC, Chapel Hill, NC) and Moffitt Cancer Center (MCC, Tampa, 

FL). Research was conducted with in accordance with ethical guidelines as outlined in the 

Declaration of Helsinki. Individuals eligible for this study included all UNC (February 27, 

2013–September 7, 2017) and MCC (February 6, 2013–August 2, 2017) patients with 

nonhematologic cancers who underwent FM testing as part of routine clinical care. A subset 

of patients in the UNC cohort were cross-referenced with data generated under the IRB- and 

Office of Human Ethics–approved protocol, LCCC1108 (NCT01457196), referred to as 

UNCseq, for whom written informed consent was obtained. Permission to review records of 

UNC patients who underwent FM testing as part of routine clinical care, in the absence of 

UNCseq testing, was permitted by the approved IRB protocol. All MCC patients included 

provided written informed consent to the Total Cancer Care cohort study, an IRB-approved 

biobanking protocol (MCC14690, MCC13579) in which individuals agree to provide tissue 

and blood samples for research and to be followed throughout their lifetime (6). Patients 

were excluded if their primary diagnosis was a hematologic cancer or if the FM sample 

failed quality control testing.

Identification and classification of clonal hematopoiesis

All mutations reported by FM (excluding amplifications, large indels, and translocations) 

across protein-coding exons were reviewed. Mutations in genes known to occur as clonal 

hematopoiesis (DNMT3A, TET2, ASXL1, TP53, ATM, CHEK2, CBL, JAK2, and SF3B1) 

in patients with cancer (5) were classified as potential clonal hematopoiesis. Although 

PPM1D is frequently mutated in cancer patients with clonal hematopoiesis (5), it was not 

included due to absence on FM clinical reports. The variant allele frequency (VAF) and FM 

classification (variant of known significance or variant of unknown significance) for each 

reported alteration was tabulated. Violin plots were constructed to examine the VAFs in 

clonal hematopoiesis genes.

Confirmation of clonal hematopoiesis mutations

For the UNC cohort, patients undergoing FM testing were cross-referenced with patients 

who underwent UNCseq testing, an NGS assay that utilized paired tumor and blood 

samples, described previously (7, 8). Alterations reported on FM were compared with 

UNCseq reads from tumor and blood using Integrative Genomic Viewer (IGV; ref. 9). 

Clonal hematopoiesis mutations were defined as mutations in which the VAF in blood 
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exceeded that in the tumor; however, if the VAF was 30% or greater in both the tumor and 

blood, the mutation was considered germline. All other reported mutations were classified as 

tumor somatic (mutations in tumor tissue only). There was no minimum VAF requirement 

for inclusion, although at least eight reads were required to support the alternate variant call.

MCC patients with low VAF mutations in clonal hematopoiesis genes (VAF < 20%, except 

for TP53 where threshold was <5%) reported on FM testing who had Total Cancer Care–

banked blood specimens were selected for targeted NGS sequencing. Matched FM 

sequencing data and NGS from blood were aligned and visualized in IGV, and VAFs of 

potential clonal hematopoiesis mutations were recorded.

NGS and bioinformatics of blood samples

Methodology for the UNCseq assay of tumor and matched normal blood NGS has been 

described previously (7). For MCC patients, genomic DNA was extracted from whole blood 

samples using Autopure LS Automated DNA Extraction (QIAGEN) and quantified using a 

Qubit fluorometer (Life Technologies). Targeted NGS was conducted with 200 ng of DNA 

input using SureSelectXTHS (Agilent) target enrichment with custom capture (all exons from 

76 genes were captured, including all 9 clonal hematopoiesis genes of interest) according to 

the manufacturer’s protocol (#G9702–90000). The size and quality of the pre- and 

postcaptured libraries were evaluated using a 2100 BioAnalzyer (Agilent) or D1000 

TapeStation (Agilent), as indicated in the SureSelectXTHS protocol. The enriched library was 

quantified using a Library Quantification Kit for NGS (KAPA Biosystems), and samples 

were diluted to a 4 nmol/L concentration and pooled for sequencing. Denaturation was 

conducted using NaOH; neutralization was conducted with Tris buffer (pH 8.5),and samples 

were diluted to a concentration of 20 pmol/L in HT1. Samples were diluted to a final 

concentration between 1.7 and 2.2 pmol/L for sequencing with a v2 Sequencing Reagent Kit 

and a NextSeq 500 desktop sequencer (Illumina). Paired-end FASTQ files were adapter- and 

quality-trimmed using TrimGalore v0.4.1/cutadapt v1.14 (10, 11). Quality control was 

performed with FastQC (12). The trimmed reads were mapped with BWA to GRCh38 (13). 

Sorting and indexing of resulting BAM files was done with SAMTOOLS (14). Duplicates 

were marked and base qualities were recalibrated according to GATK best practice (15). 

Mutations were called by GATK. All suspected clonal hematopoiesis mutations on FM 

reports were compared with mutations called from the blood samples in the UNC and MCC 

cohorts.

Statistical analysis

Descriptive statistics were used to summarize demographic and clinical characteristics of 

patients included in this study. Means, SDs, and ranges were calculated for continuous 

variables, and frequencies and percentages were generated for categorical variables. 

Differences between groups were examined using χ2 tests (for categorical variables) or 

Wilcoxon rank sum test (for numerical variables), unless otherwise specified. All tests are 

two-sided with alpha level 0.05. The analyses were done using SAS 9.4 (SAS Institute). 

Violin plots were generated using the ggplot2 package in R v. 3.4.3 (16).
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Results

Patients

A total of 1,757 FM reports (n = 768 and n = 989 from UNC and MCC, respectively) from 

1,743 patients were included in this study (Supplementary Table S1). The average age of 

individuals was 58.5 years old, and the cohort included 48% males. The most common 

tumor types were lung (22%), gastrointestinal and skin (11% each), and sarcoma (10%). 

There were no statistical differences in demographics between the UNC and MCC cohorts; 

however, there were differences in the tumor types of the patients included from the two 

institutions.

Clonal hematopoiesis on FM NGS testing

Of the 1,757 FM reports, 65% (1,139/1,757) had a mutation reported in a gene associated 

with clonal hematopoiesis. Excluding TP53, due to its high mutational frequency across 

cancer types, 35% (619/1,757) of FM reports had ≥1 mutation in a clonal hematopoiesis 

gene. Presence of mutations in clonal hematopoiesis genes was significantly associated with 

increasing patient age (P < 0.001) and cancer type (P < 0.001), when including all clonal 

hematopoiesis mutations and when excluding mutations in TP53 (Table 1; Supplementary 

Table S2). A bimodal distribution in VAFs was observed for several genes (Fig. 1; 

Supplementary Fig. S1).

Confirmation of clonal hematopoiesis by paired blood sequencing

A subset of UNC patients (N = 64) underwent both FM and UNCseq testing. Median 

coverage for UNCseq samples was 834× for blood and 764× for tumor. Of the 173 potential 

clonal hematopoiesis mutations identified on FM reports that were compared with UNCseq 

sequencing, 3.5% of variants (6/173) in 9.4% of patients (6/64) were confirmed to be clonal 

hematopoiesis events (Table 2); 101 mutations (58.4%) were confirmed to be tumor somatic 

(Table 3); and 49 variants (28.3%) were unable to be confirmed because the gene of interest 

reported by FM was not sequenced on UNCseq or the mutation was absent on UNCseq 

testing. Germline events (mutations in blood and tumor at VAF ≥ 30%) were reported by FM 

on 17 occasions [in 15 patients (23%)], of which 33% were pathogenic or likely pathogenic 

based on published criteria for interpretation of sequence variants (Supplementary Table S3; 

ref. 17). Several patients were found to have mutations reported by FM, which had multiple 

sites of origin, such as a patient with a clonal hematopoiesis mutation in DNMT3A and a 

tumor somatic TET2 mutation (Fig. 2; Supplementary Fig. S2) and a patient with a clonal 

hematopoiesis mutation in DNMT3A, a tumor somatic TP53 mutation, and a germline 

mutation in BRCA2 (Fig. 3; Supplementary Fig. S3).

A subset of MCC patients (n = 30) with low VAF mutations in clonal hematopoiesis genes 

on FM reports who had banked blood available were selected to undergo targeted NGS 

sequencing. Median target coverage was 820× per sample. Of the 53 mutations in clonal 

hematopoiesis genes reported by FM, 12 (22.6%) were detected at higher VAF in blood from 

the same individual, thus confirming clonal hematopoies is in 36.7% (11/30) (Table 2). 

Overall, the confirmed clonal hematopoiesis events (Table 2) were more likely to have been 

previously reported in the Catalogue for Somatic Mutations in Cancer (COSMIC) database 
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in the “haematopoietic and lymphoid” category than the tumor somatic events occurring in 

clonal hematopoiesis genes (Table 3; Supplementary Fig. S4; mean count 97 vs. 2, P < 

0.0001).

In the UNC cohort, VAFs from true clonal hematopoiesis events were lower than VAFs from 

tumor somatic events in clonal hematopoiesis genes (median VAF of 3% vs. 27%, 

respectively, P < 0.001). In the UNC cohort, true clonal hematopoiesis events were enriched 

in patients who had FM testing performed after exposure to chemotherapy or radiotherapy, 

as opposed to patients who were naïve to chemotherapy and radiotherapy at the time of FM 

testing [17.7% (6/34) of previously treated patients vs. 0% (0/29) chemotherapy/

radiotherapy naïve patients (1 patient excluded due to missing treatment data), P = 0.027 by 

Fisher exact test]. Given that age can be a significant confounder with respect to the 

presence of clonal hematopoiesis, we analyzed whether patients who were chemotherapy/

radiotherapy naïve at the time of FM testing were younger than the pretreated patients, but 

there was no statistically significant difference (P = 0.86). Because the MCC cohort was 

selected solely based on the presence of clonal hematopoiesis mutations on FM testing, we 

did not examine an association for presence of clonal hematopoiesis events with history of 

prior chemotherapy/radiotherapy among this group, where 57% of patients (17/30) were 

chemotherapy/radiotherapy naïve at the time of FM testing. When combining both cohorts, 

we found that 8% of mutations (6/173 UNC + 12/53 MCC) in clonal hematopoiesis genes 

reported by FM were true clonal hematopoiesis events. Furthermore, the majority of 

DNMT3A mutations (64%, 7/11) were clonal hematopoiesis, whereas the minority of TP53 
mutations (4%, 2/50) were clonal hematopoiesis.

Discussion

Here, we explored the possibility that mutations reported on FM NGS testing of solid tumors 

were instead clonal hematopoiesis events. Using matched blood sequencing, we found that 

8% of mutations reported in clonal hematopoiesis–related genes on FM NGS testing were 

clonal hematopoiesis. In the UNC cohort, mutations with any VAF were considered 

potentially clonal hematopoiesis and only 3.5% were confirmed; however, for the MCC 

cohort, only mutations with low VAFs were considered, and a larger percentage (22.6%) was 

confirmed. We demonstrated that mutations reported on FM NGS testing with lower VAFs 

were more likely to be indicative of clonal hematopoiesis; however, the majority of variants 

could not be confirmed as bona fide clonal hematopoiesis. Our results also suggest that 

mutations in some clonal hematopoiesis–related genes (e.g., DNMT3A) are more likely to 

be clonal hematopoiesis than others (e.g., TP53). Among reported mutations in clonal 

hematopoiesis genes, true clonal hematopoiesis events were more likely to be reported by 

COSMIC in the “haematopoietic and lymphoid” category than tumor somatic events 

occurring in clonal hematopoiesis genes. Although we utilized FM as our comparator, due to 

this assay being frequently used in clinical practice at our institutions, these results would be 

applicable for any NGS assay that utilized tumor specimens in the absence of a matched 

blood comparator.

Oncologic patients with clonal hematopoiesis have inferior outcomes, including increased 

risk for hematologic malignancies (5, 18, 19) and shorter overall survival (5). The 
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mechanism for shorter survival is poorly understood (5). Studies from nononcologic 

populations suggest an increased risk for cardiovascular mortality (20), which is likely more 

relevant for patients with curable malignancies (21).

Few studies have examined the phenomenon of clonal hematopoiesis mutations being 

detected during sequencing of solid tumor samples, although recent studies have reported 

detection of clonal hematopoiesis events in the setting of both germline and cell-free DNA 

testing (22–25). Paired blood is critical for confirmation given the high degree of overlap 

between clonal hematopoiesis genes (e.g., common: TP53 and SF3B1, less common: KRAS, 
NRAS, IDH1, IDH2; refs. 5, 22) in both hematologic and solid cancers. We have 

demonstrated that patients with reported mutations in clonal hematopoiesis genes can have 

true clonal hematopoiesis (Table 2) or tumor somatic events in clonal hematopoiesis genes 

(Table 3).

Recent studies have outlined the difficulty of differentiating germline mosaic events from 

acquired somatic events, particularly in TP53 and PPM1D, both recently established as 

common, therapy-related clonal hematopoiesis events (5, 26). Specifically, PPM1D 
mutations were originally thought to represent mosaic events leading to predisposition to 

breast and ovarian cancer(27). However, subsequent studies have elucidated that such events 

are enriched in the peripheral blood of patients with prior chemotherapy and radiotherapy 

exposure and instead represent acquired somatic events (5, 26, 28).

Limitations of this work include the inability to sort leukocytes from tumor specimens, 

which would be the “gold-standard” for determining mutation origin. As a result, it is 

conceivable that clonal hematopoiesis–type mutations seen in the blood, which are either at 

lower or absent levels in the tumor tissue, could be due to circulating tumor cells (CTC) with 

novel mutations not seen in the parent tumor that was sequenced. However, given that the 

lowest blood VAF observed within this study was 1.4%, this would require an extraordinary 

amount of CTCs in the peripheral blood (2.8 cells out of 100 circulating cells, in the event of 

a fully clonal heterozygous mutation) to lead to this possibility. This level of CTCs is rarely 

if ever seen, as one CTC is estimated for every 1 million circulating leukocytes (29). Next, 

NGS methodology differed by institution, with MCC patients undergoing a more limited 

NGS panel for peripheral blood sequencing. As a result, it is possible that the frequency of 

clonal hematopoiesis mutations reported is an underestimation of the true prevalence, 

although notably all of the most commonly reported clonal hematopoiesis genes were 

examined by both institutions (with the exception of PPM1D because it was not examined 

due to the absence on FM reports). Finally, there was heterogeneity in degree of prior 

cytotoxic therapy that patients had been exposed to at the time of FM sequencing, with a 

trend toward increased clonal hematopoiesis events being reported in patients with prior 

chemotherapy/radiotherapy exposure. This finding suggests that clonal hematopoiesis events 

may more commonly be detected on tumor sequencing from pretreated patients compared 

with patients who are naïve to both chemotherapy and radiotherapy, consistent with findings 

from prior clinical and laboratory-based studies (5, 30).

In tumor-only sequencing, incorrect interpretation of results could have unfortunate clinical 

consequences. For example, a blood-derived RAS mutation [more commonly seen in 
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chronic myelomonocytic leukemia (31) though occasionally seen in clonal hematopoiesis (5, 

22)] could impact clinical decision-making in colon cancer, resulting in withholding 

cetuximab or panitumumab in what was thought to be a RAS-mutant tumor. Alternatively, a 

clinician may extrapolate data from myeloid neoplasms to a solid tumor patient on efficacy 

of hypomethylating agents in DNMT3A-mutant states, when the variant is actually clonal 

hematopoiesis, such as in multiple patients in our cohort ( Figs. 2 and 3; Supplementary 

Figs. S1 and S2; ref. 32).

Conclusions

Clonal hematopoiesis can be identified in unpaired NGS assays of solid tumor patients, and 

these suspicious mutations can be confirmed by paired blood sequencing. Improved 

understanding of NGS limitations allows for accurate application of NGS panels to 

personalized care of oncologic patients. Ultimately, caution should be exerted in 

interpretation of these assays so that accurate therapeutic selection is realized for individual 

patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

Precision medicine is being increasingly utilized in routine clinical practice for both 

prognostication and selection of targeted therapies for patients with cancer. To optimize 

translation of findings to patient care, next-generation sequencing reports should 

adequately reflect the burden of somatic mutations in the tumor being sequenced. Here, 

we describe a novel challenge that can arise during interpretation of next-generation 

sequencing assays—presence of clonal hematopoiesis mutations from admixed 

leukocytes contained within tumor specimens, leading to potential misattribution of 

mutation origin. We demonstrate that peripheral blood sequencing can be utilized to 

confirm clonal hematopoiesis events, and describe gene and allelic frequency patterns of 

clonal hematopoiesis mutations reported on next-generation sequencing clinical testing. 

In the absence of paired blood sequencing, clinicians should exert caution when 

interpreting unfractionated sequencing assays so that accurate therapeutic selection is 

realized for individual patients.
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Figure 1. 
Violin plots displaying VAFs from FM NGS testing in nine genes recurrently mutated in 

clonal hematopoiesis. Variants of known significance (VKS) are depicted by red circles, and 

variants of unknown significance (VUS) are depicted by blue triangles. Boxes represent the 

25th and 75th percentiles, with the horizontal line in the middle indicating the median, and 

the vertical lines representing the 95th percentile.
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Figure 2. 
Sequencing results for a patient with carcinoma not otherwise specified who had a 

DNMT3A mutation (left) in the blood sample and a TET2 mutation (right) in tumor tissue, 

both of which were reported on FM NGS testing of the carcinoma biopsy. The DNMT3A 
mutation is seen at a lower level in the tumor sample when compared with blood, indicating 

clonal hematopoiesis. The TET2 mutation is only observed in the tumor, confirming tumor 

somatic origin. VAFs for both tumor and blood specimens were obtained from UNCseq 

testing. Integrative Genomics Viewer images of these mutations are provided in 

Supplementary Fig. S1.
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Figure 3. 
Sequencing results for a patient with ovarian carcinoma who had DNMT3A, BRCA2, and 

TP53 mutations reported on FM NGS testing of the carcinoma biopsy. The DNMT3A 
mutation (left) is seen at a lower level in the tumor sample when compared with blood, 

indicating clonal hematopoiesis. The TP53 mutation (middle) was seen in the tumor tissue 

but absent in blood sample, consistent with a tumor somatic mutation. The BRCA2 mutation 

(right) was seen at a variant frequency of 50% in the blood sample (and 78% in the tumor 

tissue), representing a germline variant. VAFs for both tumor and blood specimens were 

obtained from UNCseq testing. Integrative Genomics Viewer images of these mutations are 

provided in Supplementary Fig. S2.
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Table 1.

Characteristics of patients with CH mutations versus those without CH mutations reported on FM testing

Characteristics CH No CH Total P

Number 1,139 618 1,757 NA

Age (mean) 60.0 55.4 58.4 <0.001

Gender (% male) 537 (47%) 309 (50%) 846 (48%) 0.25

Tumor type <0.001

   Breast 100 (9%) 34 (6%) 134 (8%)

   Gastrointestinal 150 (13%) 40 (6%) 190 (11%)

   Genitourinary 83 (7%) 59 (10%) 142 (8%)

   Gynecologic 101 (9%) 24 (3.9%) 125 (7%)

   Lung 293 (26%) 102 (17%) 395 (22%)

   Sarcoma 77 (7%) 105 (17%) 182 (10%)

   Skin 119 (10%) 65 (11%) 182 (10%)

   Other 216 (19%) 189 (31%) 405 (23%)

NOTE: Genes include DNMT3A, TET2, ASXL1, TP53, ATM, CHEK2, CBL, JAK2, and SF3B1. Both UNC and MCC patients are included 
together. The total number of reports is included here because this number represents the total number of FM reports (14 patients had more than 
one report, from different biopsies taken on different days).

Abbreviation: CH, clonal hematopoiesis.
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