41 research outputs found

    Making Sense of Singular Gauge Transformations in 1+1 and 2+1 Fermion Models

    Get PDF
    We study the problem of decoupling fermion fields in 1+1 and 2+1 dimensions, in interaction with a gauge field, by performing local transformations of the fermions in the functional integral. This could always be done if singular (large) gauge transformations were allowed, since any gauge field configuration may be represented as a singular pure gauge field. However, the effect of a singular gauge transformation of the fermions is equivalent to the one of a regular transformation with a non-trivial action on the spinorial indices. For example, in the two dimensional case, singular gauge transformations lead naturally to chiral transformations, and hence to the usual decoupling mechanism based on Fujikawa Jacobians. In 2+1 dimensions, using the same procedure, different transformations emerge, which also give rise to Fujikawa Jacobians. We apply this idea to obtain the v.e.v of the fermionic current in a background field, in terms of the Jacobian for an infinitesimal decoupling transformation, finding the parity violating result.Comment: 14 pages, Late

    Casimir effect in 2+1 dimensional noncommutative theories

    Get PDF
    We study the Dirichlet Casimir effect for a complex scalar field on two noncommutative spatial coordinates plus a commutative time. To that end, we introduce Dirichlet-like boundary conditions on a curve contained in the spatial plane, in such a way that the correct commutative limit can be reached. We evaluate the resulting Casimir energy for two different curves: (a) Two parallel lines separated by a distance LL, and (b) a circle of radius RR. In the first case, the resulting Casimir energy agrees exactly with the one corresponding to the commutative case, regardless of the values of LL and of the noncommutativity scale ξ\theta, while for the latter the commutative behaviour is only recovered when R>>ξR >> \sqrt{\theta}. Outside of that regime, the dependence of the energy with RR is substantially changed due to noncommutative corrections, becoming regular for R→0R \to 0.Comment: 12 pages, 3 figure

    Dynamical Domain Wall Defects in 2+1 Dimensions

    Get PDF
    We study some dynamical properties of a Dirac field in 2+1 dimensions with spacetime dependent domain wall defects. We show that the Callan and Harvey mechanism applies even to the case of defects of arbitrary shape, and in a general state of motion. The resulting chiral zero modes are localized on the worldsheet of the defect, an embedded curved two dimensional manifold. The dynamics of these zero modes is governed by the corresponding induced metric and spin connection. Using known results about determinants and anomalies for fermions on surfaces embedded in higher dimensional spacetimes, we show that the chiral anomaly for this two dimensional theory is responsible for the generation of a current along the defect. We derive the general expression for such a current in terms of the geometry of the defect, and show that it may be interpreted as due to an "inertial" electric field, which can be expressed entirely in terms of the spacetime curvature of the defects. We discuss the application of this framework to fermionic systems with defects in condensed matter.Comment: 12 pages, Late

    Chiral zero modes in non local domain walls

    Full text link
    We study a generalization of the Callan-Harvey mechanism to the case of a non local mass. Using a 2+1 model as a concrete example, we show that both the existence and properties of localized zero modes can also be consistently studied when the mass is non local. After dealing with some general properties of the resulting integral equations, we show how non local masses naturally arise when radiative corrections are included. We do that for a 2+1 dimensional example, and also evaluate the zero mode of the resulting non local Dirac operator.Comment: 20 pages, LaTeX, 4 figures; typos and content of sections 2 and 3 correcte

    Neumann Casimir effect: a singular boundary-interaction approach

    Get PDF
    Dirichlet boundary conditions on a surface can be imposed on a scalar field, by coupling it quadratically to a ÎŽ\delta-like potential, the strength of which tends to infinity. Neumann conditions, on the other hand, require the introduction of an even more singular term, which renders the reflection and transmission coefficients ill-defined because of UV divergences. We present a possible procedure to tame those divergences, by introducing a minimum length scale, related to the non-zero `width' of a {\em nonlocal} term. We then use this setup to reach (either exact or imperfect) Neumann conditions, by taking the appropriate limits. After defining meaningful reflection coefficients, we calculate the Casimir energies for flat parallel mirrors, presenting also the extension of the procedure to the case of arbitrary surfaces. Finally, we discuss briefly how to generalize the worldline approach to the nonlocal case, what is potentially useful in order to compute Casimir energies in theories containing nonlocal potentials; in particular, those which we use to reproduce Neumann boundary conditions.Comment: New title and reference adde

    Tunneling between fermionic vacua and the overlap formalism

    Get PDF
    The probability amplitude for tunneling between the Dirac vacua corresponding to different signs of a parity breaking fermionic mass MM in 2+12+1 dimensions is studied, making contact with the continuum overlap formulation for chiral determinants. It is shown that the transition probability in the limit when M→∞M \to \infty corresponds, via the overlap formalism, to the squared modulus of a chiral determinant in two Euclidean dimensions. The transition probabilities corresponding to two particular examples: fermions on a torus with twisted boundary conditions, and fermions on a disk in the presence of an external constant magnetic field are evaluated.Comment: Reference added. 12 pages, LateX, no figure

    Casimir effect with nonlocal boundary interactions

    Get PDF
    We derive a general expression for the Casimir energy corresponding to two flat parallel mirrors in d+1 dimensions, described by nonlocal interaction potentials. For a real scalar field, the interaction with the mirrors is implemented by a term which is a quadratic form in the field, with a nonlocal kernel. The resulting expression for the energy is a function of the parameters that define the nonlocal kernel. We show that the general expression has the correct limit in the zero width case, and also present the exact solution for a particular case.Comment: 13 pages, LaTeX; minor misprints correcte

    One-loop effects in a self-dual planar noncommutative theory

    Full text link
    We study the UV properties, and derive the explicit form of the one-loop effective action, for a noncommutative complex scalar field theory in 2+1 dimensions with a Grosse-Wulkenhaar term, at the self-dual point. We also consider quantum effects around non-trivial minima of the classical action which appear when the potential allows for the spontaneous breaking of the U(1) symmetry. For those solutions, we show that the one-loop correction to the vacuum energy is a function of a special combination of the amplitude of the classical solution and the coupling constant.Comment: Version to appear in JHE

    Regularized overlap and the chiral determinant

    Get PDF
    We study the relationship between the continuum overlap and its corresponding chiral determinant, showing that the former amounts to an unregularised version of the latter. We then construct a regularised continuum overlap, and consider the chiral anomalies that follow therefrom. The relation between these anomalies and the ones derived from the formal (i.e., unregularised) overlap is elucidated.Comment: 14 pages, late

    Finite temperature regularization

    Get PDF
    We present a non-perturbative regularization scheme for Quantum Field Theories which amounts to an embedding of the originally unregularized theory into a spacetime with an extra compactified dimensions of length L ~ Lambda^{-1} (with Lambda an ultraviolet cutoff), plus a doubling in the number of fields, which satisfy different periodicity conditions and have opposite Grassmann parity. The resulting regularized action may be interpreted, for the fermionic case, as corresponding to a finite-temperature theory with a supersymmetry, which is broken because of the boundary conditions. We test our proposal in a perturbative calculation (the vacuum polarization graph for a D-dimensional fermionic theory) and in a non-perturbative one (the chiral anomaly).Comment: 17 pages, LaTeX fil
    corecore