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We derive a general expression for the Casimir energy corresponding to two flat parallel mirrors in d + 1
dimensions, described by nonlocal interaction potentials. For a real scalar field, the interaction with the
mirrors is implemented by a term which is a quadratic form in the field, with a nonlocal kernel. The
resulting expression for the energy is a function of the parameters that define the nonlocal kernel. We
show that the general expression has the correct limit in the zero width case, and also present the exact
solution for a particular case.
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The increasing interest in the Casimir effect [1] is a natural con-
sequence of the availability of new precision experiments, which
pose an important pressure to continuously refine and improve
the existing calculations. This evolution manifests itself at differ-
ent levels; one of them amounts to coping with situations where
the geometry of the mirrors is more complex, albeit with an ideal-
ized description of their material properties, i.e., they are regarded
as mathematical surfaces occupied by perfect conductors. Another
level, which has recently received much attention, is the use of a
more accurate description of the mirrors, including corrections that
represent their departure from exactly conducting surfaces: rugos-
ity, finite temperature and conductivity, as well as finite width. The
latter is usually dealt with by the introduction of a ‘space depen-
dent mass term’ whereby the scalar field becomes very massive at
the locii of the mirrors [2]. For the case of a real scalar field ϕ in
d + 1 spacetime dimensions, and a single flat mirror centered at
xd = 0, the local Euclidean action, S local, for this kind of term is:

S local(ϕ) = 1

2

∫
ddx‖

∫
dxd Vε(xd)

[
ϕ(x‖, xd)

]2
, (1)

where x‖ denotes the time (x0) as well as the d − 1 spatial coor-
dinates parallel to the mirror (which we shall denote by x‖). The
local potential Vε(xd) is a positive function concentrated around 0,
with a width of size ε . The perfect mirror case is approached when
that size tends to zero and its strength becomes infinite; namely,
Vε(xd) → gδ(xd). g → ∞. This limit is a delicate step, since it usu-
ally introduces divergences [3] that may be difficult to deal with
in a setup that used idealized boundary conditions only.

Local interaction terms have been extended to include a non
trivial dependence on the parallel coordinates [4,5]. Translation in-
variance along them, necessarily implies a spatial nonlocality:
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S ′
local(ϕ) = 1

2

∫
ddx‖

∫
ddx′‖

∫
dxd ϕ(x‖, xd)Vε

(
x‖ − x′‖; xd

)
ϕ

(
x′‖, xd

)
,

(2)

but a Fourier transformation in x‖ , x′‖ yields a local expression in
the mixed momentum (k‖) and coordinate (xd) representation:

S ′
local(ϕ) = 1

2

∫
ddk‖
(2π)d

∫
dxd ϕ̃∗(k‖, xd)Ṽε(k‖; xd)ϕ̃(k‖, xd), (3)

where the tildes denote the Fourier transformed of the correspond-
ing object.

Note that the resulting interaction term, S ′
local(ϕ), is still as-

sumed to be local in xd , and Ṽε(k‖; xd) is concentrated around
xd = 0, on a region of size ∼ ε . However, except for the case of
a zero-width mirror, a potential which is local in xd can only be
an approximate description of the interaction with a real material.
Indeed, as explained in [6], one should in general use interactions
that also include ‘spatial dispersion’ in xd , i.e., nonlocality in the
normal coordinates. As also shown in [6], in spite of the nonlocal-
ity of the interaction, one may nevertheless use a Lifshitz formula
[8] for the Casimir energy, since that formula depends on the re-
flection coefficients at the media surfaces, and they may be defined
also for nonlocal media, under quite general assumptions.

We note in pass that the relevance of nonlocal media to
Casimir-like effects has also been appreciated in other contexts,
like String Theory [7].

In spite of the validity and usefulness of Lifshitz formula for
nonlocal media, we believe that it would be important to have
an alternative expression for the Casimir energy, where its de-
pendence on the details defining the nonlocal media were more
explicit.

One might also be interested in situations where the material
is not exactly confined to the region between two surfaces, but
rather is concentrated on a region, with a non zero (albeit rapidly
vanishing) density outside of that region. This is a situation where
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the use of reflection coefficients, albeit still possible, becomes nev-
ertheless problematic.

To confront those problems, we first define the setup: for a
mirror centered at an arbitrary position xd = b, we shall use an
interaction term S(b)

I given by:

S(b)
I (ϕ) = 1

2

∫
ddk‖
(2π)d

∫
dxd

∫
dx′

d

× ϕ̃∗(k‖, xd)Ṽε

(
k‖; xd − b, x′

d − b
)
ϕ̃

(
k‖, x′

d

)
. (4)

The kernel Ṽε(k‖; xd, x′
d) is not invariant under translations in the

normal direction (xd → xd + h, x′
d → x′

d + h); besides, we still as-
sume it to be concentrated around xd = 0 and x′

d = 0. This con-
centration may be used to write a convenient expansion for the
kernel, based on the introduction of [ψ(ε)

n (xd)]n , an orthonormal
basis of functions of the normal coordinate, obeying the boundary
conditions that follow from the microscopic model.1

Then, without any loss of generality, the nonlocal kernel will be
expanded as follows:

Ṽε

(
k‖; xd, x′

d

) =
∑
m,n

Cmn(k‖, ε)ψ
(ε)
m (xd)ψ

(ε)∗
n

(
x′

d

)
, (5)

where Cmn(k‖, ε) = C∗
nm(k‖, ε), from the reality of the action.

Being a nonlocal term, one has to rephrase the properties it
should have to behave as a (generalized) mass term, in the sense
that it favours the vanishing of the field around the region where
it is different from zero. It is clear then that the quadratic form (5)
has to be definite positive (in the space generated by the basis);
this amounts to a non-trivial relation for the Cmn matrix.

Let us illustrate the previous construction with two examples.
Firstly, we consider a model where S(b)

I emerges from the linear
coupling of ϕ to a microscopic real scalar field ξ(x), which is con-
fined to the region |xd −b| � ε/2 (x‖: arbitrary), satisfying Dirichlet
boundary conditions at xd = b ± ε/2. It is sufficient to deal with
b = 0, since the general case is obtained by a translation of the
kernel. Following a generalization of the approach of [9], we see
that, in the functional formalism, S(0)

I may be written as follows:

e−S(0)
I (ϕ) =

∫
Dξ e−Sm(ξ)+ig

∫
ddx‖

∫ +ε/2
−ε/2 dxd ξ(x‖,xd)ϕ(x‖,xd)∫

Dξ e−Sm(ξ)
, (6)

where g is a coupling constant and Sm is the action for the mi-
croscopic field. The matter field ξ may have a self-interaction,
controlled by an independent coupling constant (implicit in Sm).

To proceed, we denote by W ( J ) the generating functional of
connected correlation functions of ξ , related to Z( J ), the one for
the full correlation functions:

Z( J ) =
∫

Dξ e−Sm(ξ)+∫
ddx‖

∫ +ε/2
−ε/2 dxd J (x‖,xd)ξ(x‖,xd)

, (7)

by W = ln Z . The current J is confined to the same region as ξ ,
but it has free boundary conditions. We then have that S I (ϕ) =
−W [igϕ(x)]. On the other hand, since only the quadratic part in
ϕ will be retained,2

S(0)
I (ϕ) = −W

[
igϕ(x)

]
� 1

2
g2

∫
dd+1x

∫
dd+1x′ ϕ(x)W (2)(x, x′)ϕ(x′), (8)

where W (2) is the connected 2-point function.

1 For example, they could satisfy Dirichlet boundary conditions at xd = ±ε/2. But
they are not necessarily of compact support; they could, for example, be exponen-
tially decaying functions with a typical dispersion ∼ ε .

2 The media are assumed to be linear.
Now, assuming that Sm is translation invariant along x‖ , we im-
mediately identify the nonlocal kernel:

Ṽε

(
k‖; xd, x′

d

) = g2W̃ (2)
(
k‖; xd, x′

d

)
. (9)

Besides, since ξ satisfies Dirichlet boundary conditions, we have:

W̃ (2)
(
k‖;0, x′

d

) = W̃ (2)(k‖; xd,0) = 0. (10)

Then we have the expansion:

Ṽ (0)
ε

(
k‖; xd, x′

d

) =
∑
m,n

ψ
(ε)
m (xd)Cmn(k‖, ε)ψ

(ε)∗
m (xd), (11)

where the orthonormal functions are given by:

ψ
(ε)
n (xd) =

√
2

ε
×

{
sin

(nπxd
ε

)
if n = 2k (k = 1,2, . . .),

cos
(nπxd

ε

)
if n = 2k + 1 (k = 0,1, . . .).

(12)

The precise form of Cmn(k‖, ε) depends on the action Sm . If it
is a free action we have the diagonal expression:

Cmn(k‖, ε) = g2δmn

(nπ
ε )2 + k2‖ + μ2

, (13)

where μ is the mass of the microscopic field.
As an alternative example, we consider the case of a charged

field ξ , ξ̄ , coupled quadratically to the real field ϕ . In this case, the
analogue expression to (6) would be:

e−S(0)
I (ϕ) =

∫
Dξ Dξ̄ e−Sm(ξ̄ ,ξ)+g

∫
ddx‖

∫ +ε/2
−ε/2 dxd ξ̄ (x‖,xd)ϕ(x‖,xd)ξ(x‖,xd)∫

Dξ Dξ̄ e−Sm(ξ̄ ,ξ)
,

(14)

where, to simplify the treatment, we assume Sm to be quadratic:

Sm(ξ̄ , ξ) =
∫

ddx‖

+ε/2∫
−ε/2

dxd
[
∂ξ̄∂ξ + μ2ξ̄ ξ

]
. (15)

The integral can be formally performed, but the result is a func-
tional determinant. Since we use a quadratic approximation for
S(0)

I , we only need it up to that order in ϕ . The corresponding
contribution is just a 1-loop diagram with two legs. Translation in-
variance along the parallel coordinates suggest the use of a mixed
Fourier representation:

Ṽε

(
k‖; xd, x′

d

) = g2
∫

dd p‖
(2π)d

G̃
(

p‖; xd, x′
d

)
G̃
(

p‖ + k‖; x′
d, xd

)
, (16)

where G̃(p‖; xd, x′
d) is the microscopic field propagator in the

mixed representation. Rather than evaluating the actual form of
the nonlocal term for this model, we just want to show that the
boundary conditions for the nonlocal kernel are determined from
the ones we impose on the microscopic field: assuming, for ex-
ample, that this field satisfies Dirichlet boundary conditions at the
boundaries of the mirror, from (16) we derive for Ṽε the same kind
of condition. Namely, the kernel vanishes when xd = 0 or x′

d = 0.
Thus, also in this case the model produces a nonlocal kernel with
the structure of (11) (the same basis), with different coefficients
Cmn .

Before evaluating the energy, let us briefly examine the bound-
ary conditions that follow from the nonlocal term, in a concrete
case. To that end, we consider the real-time version of the equa-
tions of motion for a free massless scalar field coupled to a nonlo-
cal potential centered at xd = 0. Assuming, for the sake of simplic-
ity, d = 1, and Cmn = Cmn(ε) (independent of ω), the equation of
motion becomes:

�ϕ(x0, x1) = −
∫

dx′
1 Vε

(
x1, x′

1

)
ϕ

(
x0, x′

1

)
. (17)
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Fourier transforming in time,(−∂2
1 − ω2)ϕ̃(

ω, x′
1

) = −
∫

dx′
1 Vε

(
x1, x′

1

)
ϕ̃

(
ω, x′

1

)
. (18)

Then we multiply both sides of the equation above by ψ
(ε)∗
m (x1)

and integrate over x1, to obtain:〈
ψ

(ε)
m

∣∣(−∂2
1 − ω2)∣∣ϕ̃(ω)

〉 = −
∑

n

Cmn(ε)
〈
ψ

(ε)
n

∣∣ϕ̃(ω)
〉
, (19)

where Dirac’s bracket notation denotes the scalar product of func-
tions of xd . Let us assume, for the sake of simplicity, that the
proper basis is (12). Then 〈ψ(ε)

m |(−∂2
1 )|ϕ̃〉 = (mπ

ε )2〈ψ(ε)
m |ϕ̃〉 and, as

a consequence:

∑
n

Cmn(ε)αn =
[
ω2 −

(
mπ

ε

)2]
αm, (20)

where αn ≡ 〈ψ(ε)
n |ϕ̃(k‖)〉. Thus,

∑
n

Cmn(ε)α∗
mαn =

∑
m

[
ω2 −

(
mπ

ε

)2]
|αm|2. (21)

This means that, to have a solution, the αn coefficients diagonalize
C , and, since the quadratic form on the left-hand side is positive,
we αm vanishes whenever ω2 < (mπ

ε )2.
This means, in particular, that for ω2 < (π

ε )2, all the coefficients
vanish: the field vanishes when |x1| < ε

2 . Of course, things are
different if, for example: ( π

ε )2 < ω2 < ( 2π
ε )2, then only the first

coefficient may be different from 0.
An interesting case is that of a Cmn which is a finite matrix: one

that vanishes for m > N of, say. An extreme case is N = 1: there
are then only two regimes, depending on whether ω2 is bigger or
smaller than ( π

a )2. In the former case, ϕ in orthogonal to ψ
(ε)
1 .

This implies that has at least one node in the [− ε
2 , ε

2 ] interval. This
is the manifestation of a Dirichlet-like boundary condition in this
context, which of course will only hold true up to certain values
of ω2. For bigger values, the previous condition is relaxed and the
mirror is transparent.

Let us now evaluate the Casimir energy, discarding terms that
are independent of the distance between mirrors (and do not
contribute to the force). For two mirrors, one at xd = 0 and the
other at xd = a, the total action S is S(ϕ) = S0(ϕ) + S I (ϕ) where
S0 ≡ 1

2

∫
dd+1x ∂μϕ∂μϕ , and S I (ϕ) = S(0)

I + S(a)
I .

Since S is a quadratic in the fields, it is immediate to find an
expression for the vacuum energy E0, in terms of the determinant
of the corresponding kernel defining the quadratic form. Since we
have translation invariance along x‖ , we use the energy per unit
area, E0, and take advantage of the Fourier transformation to ob-
tain:

E0 = 1

2

∫
ddk‖
(2π)d

Tr ln K̃, (22)

where K̃ is an operator acting on functions of xd , whose matrix
elements are:

K̃
(
xd, x′

d

) = K̃0
(
xd, x′

d

) + Ṽ (0)
ε

(
k‖; xd, x′

d

) + Ṽ (a)
ε

(
k‖; xd, x′

d

)
. (23)

where K0(xd, x′
d) ≡ (−∂2

d + k2‖)δ(xd − x′
d). The trace operation, de-

noted by ‘Tr’ refers to the trace in the space of functions depending
on xd .

The expression above contains three contributions which, to
calculate the Casimir force between the two mirrors, are irrele-
vant. One of them, E vac

0 , corresponds to the vacuum energy density
in the absence of mirrors

E vac
0 = 1

∫
ddk‖

d
Tr ln K̃0. (24)
2 (2π)
The other two, denoted by E (0)
0 and E (a)

0 , are the mirrors’ self-
energies (and therefore we shall discard them). They have the
form:

E (b)
0 = 1

2

∫
ddk‖
(2π)d

Tr ln
(

I + W (b)
)
, (25)

where b = 0,a, and W (b) denotes an operator, acting on the same
space as above, and defined by:

W (b) = K̃−1
0 V (b). (26)

V (0) , V (a) have non-trivial matrix elements in smaller spaces,
namely, the ones generated by the basis functions sitting at each
mirror. This fact can be used to show that the trace operation
above may be taken, for each term, using only the respective ba-
sis at xd = 0 and xd = a (the trace operation over the complement
vanishes).

Using matrix elements defined with the functions ψ
(ε)
n and

φ
(ε)
n , such that φ

(ε)
n (xd) ≡ ψ

(ε)
n (xd − a):

W (0)
mn = 〈

ψ
(ε)
m

∣∣K̃−1
0 V (0)

∣∣ψ(ε)
n

〉
,

W (a)
mn = 〈

φ
(ε)
m

∣∣K̃−1
0 V (a)

∣∣φ(ε)
n

〉
. (27)

I denotes the identity operator, so that: Imn = δmn . A simple shift
of variables leads to E (0)

0 = E (a)
0 , as it should be.

After extracting the previous three contributions, we obtain a
subtracted energy density, Ẽ0, which by some straightforward al-
gebra may be put in the form:

Ẽ0 = 1

2

∫
ddk‖
(2π)d

Tr ln(I − O), (28)

where O is an operator whose matrix elements may be given in
terms of the ψ

(ε)
n basis, as follows:

Omn =
∑
p,q,r

U (0)
mp C pqU (a)

qr Crn, (29)

where

Umn = 〈
ψ

(ε)
m

∣∣[K̃0 + V (0)
ε

]−1∣∣φ(ε)
n

〉
,

U (a)
mn = 〈

φ
(ε)
m

∣∣[K̃0 + V (a)
ε

]−1∣∣ψ(ε)
n

〉 = U (0)
mn ≡ Umn. (30)

Taking into account the previous relations,

Ẽ0 = 1

2

∫
ddk‖
(2π)d

Tr ln(I − U C U C), (31)

which is a nonlocal version, for flat, identical mirrors, of the equa-
tion derived in [10] (see also [11]).

Note that Umn can be written more explicitly, by performing an
expansion in powers of V (0)

ε . Defining: Δmn ≡ 〈ψ(ε)
m |[K0]−1|ψ(ε)

n 〉
and Γmn ≡ 〈ψ(ε)

m |[K0]−1|φ(ε)
n 〉, we see that:

U (0)
mn = Γmn − Δmp C pqΓqn + Δmp C pqΔqr CrsΓsn + · · · (32)

(we used Einstein’s summation convention). Then we see that:

U = (I + ΔC)−1Γ. (33)

Let us check that the expressions above do yield the proper an-
swer when the limit corresponding to the case of perfect mirrors
is taken. This is, in the present formalism, tantamount to:

Ṽ (0)
ε

(
k‖; xd, x′

d

) = λδ(xd)δ
(
x′

d

)
, (34)

(sharp boundary conditions) and then λ → ∞ (strong boundary
conditions). One immediately gets, from (34), the matrix elements:

Cmn = λψ
(ε)
m (0)ψ

(ε)∗
m (0). (35)
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Inserting this into (29), we obtain:

Ẽ0 = 1

2

∫
ddk‖
(2π)d

ln

[
1 −

(
λ

2k‖ + λ

)2

e−2k‖a
]
, (36)

which in the strong limit, and for d = 3 yields:

Ẽ0 = 1

2

∫
d3k‖
(2π)3

ln
(
1 − e−2k‖a)

= − π2

1440a3
, (37)

which is the proper result.
Finally we consider a truly nonlocal example:

Cmn(k‖, ε) = δm0δn0λ(k‖), (38)

where λ(k‖) > 0. It corresponds to a 1 × 1 matrix C in the space
generated by the basis functions. In this case, we find that:

Omn = [
λ(k‖)

]2
U00Um0δn0. (39)

For this particular case, the O matrix has rank 1, so only one of
its eigenvalues is different from 0, and the trace of the log may be
evaluated exactly. The Casimir energy becomes:

Ẽ0 = 1

2

∫
ddk‖
(2π)d

ln
[
1 − λ2(k‖)(U00)

2]. (40)

We may produce a more explicit expression for the matrix ele-
ments of U :

U (0)
00 = [

1 + λ(k‖)Δ00
]−1

Γ00, (41)

where

Δ00 =
∫

dkd

2π

|〈ψ(ε)
0 |kd〉|2

k2
d + k2‖

(42)

(|kd〉 is the plane wave ket).
The remaining object, Γ00 is:

Γ00 =
∫

dkd

2π
eikda |〈ψ(ε)

0 |kd〉|2
k2

d + k2‖
. (43)

Equipped with the previous expressions, we may calculate the
Casimir energy for a particular basis element. An interesting ex-
ample is the choice of the exponentially localized function

ψ
(ε)
0 = e

− x2

2ε2

π1/4ε1/2
, (44)

since it allows one to evaluate the integrals above exactly. The re-
sult for Ẽ0, in d spatial dimensions, may be written in terms of an
integral involving a function G

Ẽ0(a, ε) = 1

Γ ( d
2 )2dπd/2ad

×
∞∫

0

dp pd−1 ln

{
1 −

[
G

(
p; 2ε

a
,aλ

(
p

a

))]2}
, (45)

depending on dimensionless parameters. It is given explicitly by:

G(p; x, l) = e−p erfc(xp − 1
2x ) + ep erfc(xp + 1

2x )

pe−x2 p2

2
√

π l
+ 2 erfc(xp)

, (46)

where erfc is the complementary error function.
It is immediate to check that the Casimir energy for the perfect

mirror case is reproduced when ε
a → 0 and λ → ∞. On the other

hand, when that limit is taken for a finite λ, the result has the
same form as in the local case, but with a (finite) renormalization
Fig. 1. Casimir energies corresponding to the nonlocal (continuous line) and local
(dashed line) cases, as a function of b ≡ a

ε for ελ ≡ 1
8
√

π
.

for λ. Indeed, if λlocal denotes the coupling constant in the local
δ-potential case, the energies agree for λ = λlocal

8
√

π
.

For finite values of ε
a , we have the interesting phenomenon that

the corrections are not analytical in that variable. Indeed, one can
see that the corrections to the zero-width case are proportional to
a factor e−( a

2ε )2
.

To make the comparison with the local case more explicit we
present, in Fig. 1, the plots of the Casimir energies correspond-
ing to the local and nonlocal cases, for d = 1. The local potential
is chosen so that it agrees with the nonlocal one when ε → 0
(λlocal = 8

√
πλ):

A remarkable fact, that can be observed in the plot, is that the
Casimir energy for the nonlocal case becomes finite when the dis-
tance between the mirrors tends to zero. This is a manifestation
of the fact that the nonlocality softens the UV behaviour of the
system. Yet another consequence of the same effect is that the in-
tegral over k‖ for the energy of a single mirror, E (b)

0 (see Eq. (25)),
has a better UV behaviour that its local counterpart. In particular,
for d = 1, a simple calculation shows that it becomes:

E (b)
0 = 1

2π

∞∫
0

dk ln

[
1 + 4λ

√
π

k
e4ε2k2

erfc(2εk)

]
, (47)

which is convergent for any ε > 0 (we recall that its local counter-
part is logarithmically divergent [3]).

We conclude by noting that, as shown in the examples above,
nonlocal potentials can be used to impose boundary conditions
in finite size mirrors, and they becomes automatically frequency
dependent. Also, in spite of their seemingly complex structure, a
general expression for the energy may be derived, which contains
some new interesting features: the non-analytic behaviour of its
small-width expansion and a softer UV behaviour.

In spite of the above, the perfect mirror limit is still properly
reproduced. Besides, when the distance between mirrors is of the
order of ε , the Casimir force vanishes, rather than becoming infi-
nite, as it happens in the local case.
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