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Abstract

We study the Dirichlet Casimir effect for a complex scalar field on two noncommutative spatial coordinates plus a commutative time. To that
end, we introduce Dirichlet-like boundary conditions on a curve contained in the spatial plane, in such a way that the correct commutative limit
can be reached. We evaluate the resulting Casimir energy for two different curves: (a) Two parallel lines separated by a distance L, and (b) a circle
of radius R. In the first case, the resulting Casimir energy agrees exactly with the one corresponding to the commutative case, regardless of the
values of L and of the noncommutativity scale θ , while for the latter the commutative behaviour is only recovered when R � √

θ . Outside of that
regime, the dependence of the energy with R is substantially changed due to noncommutative corrections, becoming regular for R → 0.
© 2007 Elsevier B.V. Open access under CC BY license.
In the Casimir effect [1], a nice interplay between the geom-
etry of a spatial region and the vacuum fluctuations of a field
conspire to produce an observable effect: the Casimir force. The
properties of such a force do depend on the kind of field theory
considered, on the nature of the boundary conditions imposed,
and on the number of spatial dimensions. The physical reason
is that the properties above will determine the kind of vacuum
fluctuations that are allowed in each spatial region, and whose
competing effects produce the Casimir force.

On the other hand, Noncommutative Quantum Field Theo-
ries (NCQFT’s) [2], are endowed with an intrinsic scale, due to
the fundamental commutation relation:

(1)[xμ, xν] = iθμν, μ, ν = 0,1, . . . , d,

where θμν is a constant antisymmetric tensor. The resulting ex-
istence of a ‘granularity’ for the coordinates resolution, with
its corresponding scale θ playing the role of a minimal area,
suggests the possibility that noncommutativity might affect the
properties of the Casimir force introducing corrections depend-
ing on

√
θ/L (where L is a length related to the ‘size’ of the

system).
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Besides this immediate, merely dimensional argument, we
should expect also interesting results to emerge when a NC-
QFT is subject to boundary conditions on a nontrivial region:
firstly, the boundary conditions are certainly problematic by
themselves, since they are imposed on elements in a noncom-
mutative algebra. In particular, the act of imposing a boundary
condition on a codimension-1 manifold will set the spatial reso-
lution along one spatial coordinate to zero. Secondly, NCQFT’s
have been associated to incompressible quantum fluids [3,4],
whose fluctuations are (because of that property) expected to be
more sensitive to the existence of boundaries than in the com-
mutative case.

In this Letter, we consider the Casimir effect for the NCQFT
of a complex scalar field in 2 + 1 dimensions. In this case only
two spacetime coordinates may be noncommutative; we shall
assume them to be the two spatial ones (which form a Moyal
plane), while the time is a commutative object. Our main mo-
tivation for considering precisely this situation is that concrete
physical systems do exist where noncommutativity is naturally
realized in exactly that way: indeed, when a strong constant
magnetic field is applied to a two-dimensional system, a pro-
jection to the lowest Landau level justifies a noncommutative
description [5,6]. On the other hand, since the time coordinate
remains commutative, the Hamiltonian still plays the role of
the generator of time translations in the usual way, hence many
standard Quantum Field Theory tools have the same interpreta-
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tion that in the commutative case. In particular, a path integral
formula for the vacuum persistence amplitude can be applied to
obtain the vacuum energy.

In this way we shall be able to disentangle new effects that
result from the interference of noncommutativity and boundary
conditions, from the ones that, even in the absence of bound-
aries, could still modify the vacuum energy.

Some works have already dealt with the issue of impos-
ing boundary conditions within the context of NCQFT [7–9].
However, both the kind of system considered and the approach
followed are different; therefore the ensuing conclusions are
incommensurable. For example, in [7], the time coordinate is
regarded as noncommutative, while in [8] and [9] noncommu-
tativity is introduced for manifolds without boundaries.

The complex scalar field ϕ, on which boundary conditions
are to be imposed on the curve C, shall be equipped with a stan-
dard free Euclidean action S0:

(2)S0(ϕ
∗, ϕ) =

∫
d3x

(
∂μϕ∗ � ∂μϕ + m2ϕ∗ � ϕ

)
,

where the Moyal product involves just the two spatial coordi-
nates xj , j = 1,2:

f (x0, x1, x2) � g(x0, x1, x2)

(3)≡ lim
y→x

e
i
2 θjk

∂
∂xj

∂
∂yk f (x0, x1, x2)g(x0, y1, y2).

To impose the boundary conditions for the field on C, we use
the procedure of adding to the Lagrangian a term that intro-
duces an interaction with C, in such a way that the boundary
conditions emerge when the interaction is strong. This proce-
dure, already used in the Commutative Quantum Field Theory
(CQFT) case [10], is here much simpler than attempting to im-
pose the boundary conditions on the field.

To briefly review this approach, let us apply it to the com-
mutative version of our first example, namely, a region C that
corresponds to two straight lines at x2 = 0 and x2 = L. In this
case, the total Euclidean action S = S0 + SI includes an inter-
action with C:

SI (ϕ,ϕ∗) = λ

∫
x0,x1

[
ϕ∗(x0, x1,0)ϕ(x0, x1,0)

(4)+ ϕ∗(x0, x1,L)ϕ(x0, x1,L)
]
.

The vacuum energy E0, may be obtained from the path integral
expression

(5)e−T E0 =
∫
Dϕ∗Dϕe−S∫
Dϕ∗Dϕe−S0

,

where the denominator subtracts the L → ∞ contribution, and
T is assumed to tend to infinity. Then

(6)E0 = lim
T →∞,λ→∞

1

T
Tr log(1 + ΔD),

where Δ is the free propagator and D is an operator whose
kernel is defined by

(7)SI =
∫

ϕ∗(x)D(x, y,L,λ)ϕ(y).
x,y
Of course, in this case E is expected to be proportional to the
length of the lines (in the x1 direction). Since that length is re-
garded as infinite, in practice one deals with the linear density
of energy. The λ → ∞ limit is, on the other hand, taken in order
to enforce Dirichlet boundary conditions.

Let us now generalize this example to the noncommutative
case, considering an action S� = S0 + S�

I where S�
I ≡ S

�(L)
I +

S
�(0)
I with:

(8)S
�(L)
I ≡ λ

∫
x

ϕ∗ � δL
2 � ϕ,

and δL
2 ≡ δ(x2 − L). S

�(0)
I corresponds to setting L ≡ 0 above.

The Casimir energy will then be obtained by applying (5) to the
action S�.

Introducing the Fourier transform of the field with respect to
the x0 and x1 variables,

(9)ϕ(x0, x1, x2) =
∫

dω

2π

∫
dp

2π
ei(ωx0+px1)ϕ̃(ω,p, x2),

and using the properties of the �-product, we may write the in-
teraction term at x2 = L as follows:

S
�(L)
I = λ

∫
dω

2π

∫
dp

2π

∫
dx2 δ(x2 − L)

(10)× ϕ̃∗
(

ω,p,x2 + θp

2

)
ϕ̃

(
ω,p,x2 + θp

2

)
,

and a similar expression for S
�(0)
I . Performing now the change

of variables

(11)ϕ̃(ω,p, x2) = ψ

(
ω,p,x2 − θp

2

)
(which yields no Jacobian in the path integral), and taking into
account the invariance of the free kernel under translations in
x2, one sees that the action becomes:

S =
∫

dω

2π

∫
dp

2π

∫
dx2 ψ∗(ω,p, x2)

× {(
ω2 + p2 − ∂2

2 + m2) + λ
[
δ(x2 − L) + δ(x2)

]}
(12)× ψ(ω,p,x2).

Note that θ has disappeared from the action, and indeed, this
expression coincides with the one we would have obtained in
the commutative case. This means that the vacuum energy E0
for the noncommutative model is identical to the commutative
one, regardless of the value of λ. In particular, for the Dirich-
let case (λ → ∞), we conclude that the Casimir force in the
NCQFT agrees, for this geometry, with the CQFT one.

This property could seem to be surprising at first, but then
one should realize that it is a consequence of the fact that
this boundary divides space into two noncompact subsets. And
the noncommutative effects seem to be controlled by the ratio
between the area enclosed by the boundary and the minimal
area θ . It should be noted that the agreement with the CQFT re-
sult is realized after performing a field redefinition that depends
on θ . This means that the 〈ϕϕ∗〉 propagator in the presence of
the boundaries will not be equal to its commutative counterpart,
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in spite of the fact that they will produce the same result for the
Casimir energy.

Let us now consider the qualitatively different case of a
circular defect; to be more precise, assuming a free action as
before, we now consider the NCQFT analog of a commutative
interaction term:

(13)SI = λ

∫
d3x δ(r − R)ϕ∗ϕ,

in the λ → ∞ limit. A difficulty one immediately faces is to
find a natural way to introduce the noncommutative version of
the δ(r − R)-function. However, that is not strictly necessary:
we only need to assign a meaning to the integral of δ(r − R)

times a function (as it appears in the interaction term). From
the defining properties of the δ distribution in the commutative
case, we recall that it only depends on the values of the function
on the x2

1 + x2
2 = R2 circle. And there is a basis for the space

of fields where this problem looks somewhat simpler, since it
is compatible with rotation symmetry in the noncommutative
plane: the so-called ‘matrix basis’ [11]. Here, functions that de-
pend only on R are diagonal, and one can then attribute a clear
meaning to the interaction term, as one that only depends on the
value of the field on an eigenspace of x2

1 + x2
2 .

Using the same conventions as in [12], we shall assume the
interaction term to have the form:

(14)S�
I = λ

∫
d3x fNN � ϕ∗ � fNN � ϕ,

where no sum over N is meant. As it has been shown in [12],
fNN is a radial function. And certainly it yields for the interac-
tion term a result that only depends on the function at a radius
which is determined by N : recalling the relation x2 + y2 ↔
2(N + 1

2 )θ , R ≈ √
2Nθ , which becomes a continuous variable

in the commutative limit (large N ). For small N , only discrete
values of R are possible: as expected, there is an ‘area quanti-
zation’ effect and one cannot confine the field to a region that
whose area is not a multiple of the minimal one. The commu-
tative Casimir energy for this case behaves like R−1, which in

our case would correspond to N− 1
2 .

Decomposing the field variables in the matrix base, S�
I =

λ
∫
x0

ϕ∗
NN(t)ϕNN(t).1 Then, the vacuum energy becomes:

(15)E0(N) =
∫

dω

2π
log

(
1 + λΔN,N;N,N(ω)

)
,

where Δn1,n2,n3,n4 is the free propagator written in the ma-
trix basis. We may obtain it by a simple redefinition from the
(1 + 1)-dimensional one presented explicitly in [13], the result
being:

Δn1n2,n3n4(ω) = δn1+n3,n2+n4

∞∫
0

dx xn2−n1e−x

(16)×
√

n1!n4!
n2!n3!

L
n2−n1
n1 (x)L

n3−n4
n4 (x)

ω2 + m2 + 2
θ
x

,

1 Global factors are absorbed in a redefinition of the field variable because
the action is exactly quadratic.
Fig. 1. Numerical evaluation of the integral in (19).

where the L
a
b denote associated Laguerre polynomials. In our

case only part of the diagonal elements of this object appear, so
that the expression for the vacuum energy becomes:

(17)E0(N) = 1

2π

∫
ω∈R

log

(
1 + λ

∞∫
0

dx e−x [LN(x)]2

ω2 + m2 + 2
θ
x

)
,

where L
N is the Laguerre polynomial of order N .

The previous result for the vacuum energy is the starting
point for our derivation of more explicit expressions, in differ-
ent limits and for particular cases.

We first assume m = 0; thus, changing variables: ω →
θ−1/2ω, we have:

(18)E0(N) = 1

2π
√

θ

∫
ω∈R

log

(
1 + λθ

∞∫
0

dx e−x [LN(x)]2

ω2 + 2x

)
.

If the condition λθ 
 1 is met, we have:

E0(N) ≈ 1

2π
√

θ
λθ

∫
ω∈R

∞∫
0

dx e−x [LN(x)]2

ω2 + 2x

(19)= 1

2π
√

θ
λθπ

∞∫
0

dx e−x [LN(x)]2

√
2x

.

Of course this is a convergent integral. We performed a nu-
merical evaluation of (19) for different values of N , the results
of which are shown in Fig. 1. Note that close to the origin E0 is
well behaved; for large N we should have instead an asymptotic
behaviour ∼ 1/

√
N .

We see that, up to our maximum N , (19) does not yet reach
its asymptotic regime, which corresponds to a − 1

2 slope.2 In
Fig. 2 we plot the slope (α) of the previous graph versus logN .

2 We have defined the coefficient of the power law as the one an experimen-

talist would use, namely, α = ∂ log(ΔE) .

∂ log(N)
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Fig. 2. Slope (α) of Fig. 1.

To see that the asymptotic power law will be such that
α → − 1

2 , we step back to:

(20)E0(N) = 1

2π
√

θ

∫
ω∈R

log

(
1 + λθ

∞∫
0

e−x [LN(x)]2

ω2 + 2x
dx

)
.

In the large-N limit, we may use the property:

(21)lim
n→∞ L

n

(
z2

4n

)
= J0(z),

where J0 is the Bessel J function of order zero. This approx-
imation can be used inside the integral in (20), because the
pre-factor reduces the effective domain of integration. Thus, if
N � 1:

(22)

∞∫
0

dx
e−x[LN(x)]2

ω2 + 2x
≈ 1

2N

∞∫
0

dz z
e− z2

4N (J0(z))
2

ω2 + 2z2

4N

.

To proceed, we only need λθ to be bounded, so that for a large
enough N (λθ/N 
 1), we shall have:

(23)E0(N) ≈ 1

2π
√

θ

∫
ω∈R

λθ

2N

∞∫
0

e− z2
4N (J0(z))

2

ω2 + z2

2N

zdz,

or:

(24)ΔE ≈ λθ

2
√

2θN

∞∫
0

(
J0(z)

)2
e

−z2
4N dz.

In this manner we have managed to extract a 1√
2θN

dependence,
but we still have to deal with the function:

(25)G(N) =
∞∫

0

(
J0(z)

)2
e− z2

4N dz.

A numerical study of this function shows that it diverges loga-
rithmically (a plot is shown in Fig. 3), so the asymptotic power
Fig. 3. Numerical evaluation of the function G(N).

law holds, as we have claimed before.3 We thus see the re-
sult converges to the asymptotic regime slowly, since the limit

is approached logarithmically. Writing 1/N
1
2 +ε , we have, for

example, ε(N = 8000) � −0.07. In spite of the slow conver-

gence, the 1/N
1
2 power law is indeed asymptotically reached

in the large N regime.
We now show more explicitly that the interaction term (14) is

delta-like in the commutative limit. In order to do that, consider
the Fourier transform of fNN [12].

f̂NN(k)√
θ

= 2π
√

θe− θk2
4 L

(N)

(
2Nθk2

4N

)

(26)≈ 2π
√

θe− θk2
4 J0(

√
2Nθk).

So that the inverse reads:

(27)
fNN(r)√

θ
=

2π∫
0

∞∫
0

√
θ

2π
e− θk2

4 J0(Rk)eikr cosβk dk dβ,

which using the integral representation of J0 gives

(28)
fNN(r)√

θ
=

∞∫
0

√
θe− θk2

4 J0(Rk)J0(kr)k dk.

So, in the limit θ → 0, orthogonality relation

∞∫
0

Jα(xv)Jα(xu)x dx = 1

u
δ(u − v),

yield to

(29)
fNN(r)√

θ
≈

√
θ

R
δ(r − R).

On the other hand, because of the previous relation, for the sec-
ond δ-like factor we have the correspondence

3 Using our definition of α we find: α = − 1
2 + B

A + B log(N)︸ ︷︷ ︸ .
G(N)
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(30)δ(0) ↔ 1

R
A

(
R2

θ

)
,

where A(q) is given by

(31)A(q) =
∞∫

0

(
J0(x)

)2
e
− x2

4q x dx.

We have seen numerically that A(q) ≈ 1.77
√

q , thus δ(0) ≈
1√
θ

. We the see that the interaction term is

(32)

√
θ

R2
λθ

∫
δRϕ∗ϕ,

that, using the assumptions{
λθ 
 N,

R2 ≈ 2Nθ,

the asymptotic form of the noncommutative interaction term
could be rewritten as

S�
I ∼ g(θ)ξ

∫
d3x δRϕ∗ϕ,

where g(θ) ≡ 1
2
√

θ
is a large constant with dimension of mass,

while ξ ≡ λθ
N

is a small (and can be assumed to be fixed) dimen-
sionless constant. This produces then the ‘hard’ δ-like form in
the asymptotic regime, as claimed at the beginning.

We have seen that, since the defect encloses a bounded re-
gion, the vacuum energy shift is seriously modified with respect
to the commutative case. In particular, close to zero size the
energy is finite, what can be shown without resorting to any ap-
proximation.

Noncommutativity effects on the energy extend to large dis-
tances, as it was shown the correction to commutative exponent
for the power law ε goes to zero as 1/ log(N).

We have also studied the finite-mass case, where we found
that the commutative power law is reached at shorter distances.
The asymptotic behavior was studied numerically from expres-
sion:

(33)ΔE = λθ

4N
√

θ

∞∫
0

z dz√
μ2 + 2z2

4N

e− z2
4N

(
J0(z)

)2
,

where μ2 = θm2, which was deduced from (17).
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