36 research outputs found

    Long-distance ABA transport can mediate distal tissue responses by affecting local ABA concentrations

    Get PDF
    Environmental stresses that perturb plant water relations influence abscisic acid (ABA) concentrations, but it is unclear whether long-distance ABA transport contributes to changes in local ABA levels. To determine the physiological relevance of ABA transport, we made reciprocal- and self-grafts of ABA-deficient flacca mutant and wild-type (WT) tomato plants, in which low phosphorus (P) conditions decreased ABA concentrations while salinity increased ABA concentrations. Whereas foliar ABA concentrations in the WT scions were rootstock independent under conditions, salinity resulted in long-distance transport of ABA: flacca scions had approximately twice as much ABA when grafted on WT rootstocks compared to flacca rootstocks. Root ABA concentrations were scion dependent: both WT and flacca rootstocks had less ABA with the flacca mutant scion than with the WT scion under conditions. In WT scions, whereas rootstock genotype had limited effects on stomatal conductance under conditions, a flacca rootstock decreased leaf area of stressed plants, presumably due to attenuated root-to-shoot ABA transport. In flacca scions, a WT rootstock decreased stomatal conductance but increased leaf area of stressed plants, likely due to enhanced root-to-shoot ABA transport. Thus, long-distance ABA transport can affect responses in distal tissues by changing local ABA concentrations

    Depletion of abscisic acid levels in roots of flooded Carrizo citrange (Poncirus trifoliata L. Raf. x Citrus sinensis L. Osb.) plants is a stress-specific response associated to the differential expression of PYR/PYL/RCAR receptors

    Get PDF
    [EN] Soil flooding reduces root abscisic acid (ABA) levels in citrus, conversely to what happens under drought. Despite this reduction, microarray analyses suggested the existence of a residual ABA signaling in roots of flooded Carrizo citrange seedlings. The comparison of ABA metabolism and signaling in roots of flooded and water stressed plants of Carrizo citrange revealed that the hormone depletion was linked to the upregulation of CsAOG, involved in ABA glycosyl ester (ABAGE) synthesis, and to a moderate induction of catabolism (CsCYP707A, an ABA 8'-hydroxylase) and buildup of dehydrophaseic acid (DPA). Drought strongly induced both ABA biosynthesis and catabolism (CsNCED1, 9-cis-neoxanthin epoxycarotenoid dioxygenase 1, and CsCYP707A) rendering a significant hormone accumulation. In roots of flooded plants, restoration of control ABA levels after stress release was associated to the upregulation of CsBGLU18 (an ABA beta-glycosidase) that cleaves ABAGE. Transcriptional profile of ABA receptor genes revealed a different induction in response to soil flooding (CsPYL5) or drought (CsPYL8). These two receptor genes along with CsPYL1 were cloned and expressed in a heterologous system. Recombinant CsPYL5 inhibited Delta NHAB1 activity in vitro at lower ABA concentrations than CsPYL8 or CsPYL1, suggesting its better performance under soil flooding conditions. Both stress conditions induced ABA-responsive genes CsABI5 and CsDREB2A similarly, suggesting the occurrence of ABA signaling in roots of flooded citrus seedlings. The impact of reduced ABA levels in flooded roots on CsPYL5 expression along with its higher hormone affinity reinforce the role of this ABA receptor under soil-flooding conditions and explain the expression of certain ABA-responsive genes.This work was supported by Ministerio de Economia y Competitividad (MINECO), Fondo Europeo de Desarrollo Regional (FEDER) and Universitat Jaume I through grants No. AGL201676574-R, UJI-B2016-23/UJI-B2016-24 to A.G-C. and V.A. and MINECO, FEDER and Consejo Superior de Investigaciones Cientificas (CSIC) through grant BIO2014-52537-R to P.L.R. S.I.Z. and M.M. were supported by predoctoral grants from Universitat Jaume I and Generalitat Valenciana, respectively. M.G.G. was recipient of a "JAE-DOC" contract from the CSIC. Mass spectrometry analyses were performed at the central facilities (Servei Central d'Instrumentacio Cientifica, SCIC) of Universitat Jaume I.Arbona, V.; Zandalinas, SI.; Manzi, M.; González Guzmán, M.; Rodríguez Egea, PL.; Gómez-Cadenas, A. (2017). Depletion of abscisic acid levels in roots of flooded Carrizo citrange (Poncirus trifoliata L. Raf. x Citrus sinensis L. Osb.) plants is a stress-specific response associated to the differential expression of PYR/PYL/RCAR receptors. Plant Molecular Biology. 93(6):623-640. https://doi.org/10.1007/s11103-017-0587-7S623640936Agarwal PK, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plant 54:201–212Agustí J, Merelo P, Cercós M, Tadeo FR, Talón M (2008) Ethylene-induced differential gene expression during abscission of citrus leaves. J Exp Bot 59:2717–2733. doi: 10.1093/jxb/ern138Antoni R, Gonzalez-Guzman M, Rodriguez L, Rodrigues A, Pizzio G, Rodriguez PL (2012) Selective inhibition of clade a phosphatases type 2 C by PYR/PYL/RCAR abscisic acid receptors. Plant Physiol 158:970–980. doi: 10.1104/pp.111.188623Antoni R, Gonzalez-Guzman M, Rodriguez L, Peirats-Llobet M, Pizzio G, Fernandez M, De Winne N, De Jaeger G, Dietrich D, Bennett MJ, Rodriguez PL (2013) PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiol 161:491–931. doi: 10.1104/pp.112.208678Arbona V, Gómez-Cadenas A (2008) Hormonal modulation of citrus responses to flooding. J Plant Growth Regul 27:241–250. doi: 10.1007/s00344-008-9051-xArbona V, López-climent MF, Pérez-Clemente RM, Gómez-cadenas A (2009) Maintenance of a high photosynthetic performance is linked to flooding tolerance in citrus. Environ Exp Bot 66:135–142. doi: 10.1016/j.envexpbot.2008.12.011Argamasilla R, Gómez-Cadenas A, Arbona V (2013) Metabolic and regulatory responses in citrus rootstocks in response to adverse environmental conditions. J Plant Growth Regul 33:169–180. doi: 10.1007/s00344-013-9359-zBaron KN, Schroeder DF, Stasolla C (2012) Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci 188–189:48–59. doi: 10.1016/j.plantsci.2012.03.001Benschop JJ, Millenaar FF, Smeets ME, Van Zanten M, Voesenek LACJ, Peeters AJM (2007) Abscisic acid antagonizes ethylene-induced hyponastic growth in Arabidopsis. Plant Physiol 143:1013–1023Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, Li C (2012) The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell 24:2898–2916. doi: 10.1105/tpc.112.098277De Ollas C, Hernando B, Arbona V, Gómez-Cadenas A (2013) Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. Physiol Plant 147:296–306. doi: 10.1111/j.1399-3054.2012.01659.xDupeux F, Santiago J, Betz K, Twycross J, Park S-Y, Rodriguez L, Gonzalez-Guzman M, Jensen MR, Krasnogor N, Blackledge M, Holdsworth M, Cutler SR, Rodriguez PL, Márquez JA (2011) A thermodynamic switch modulates abscisic acid receptor sensitivity. EMBO J 30:4171–4184. doi: 10.1038/emboj.2011.294Finkelstein RR, Rock CD (2002) Abscisic Acid biosynthesis and response. Arabidopsis Book 1:e0058. doi: 10.1199/tab.0058Fuchs S, Tischer SV, Wunschel C, Christmann A, Grill E (2014) Abscisic acid sensor RCAR7/PYL13, specific regulator of protein phosphatase coreceptors. Proc Natl Acad Sci U S A 111:5741–5746. doi: 10.1073/pnas.1322085111Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23:412–427. doi: 10.1105/tpc.110.080325Gonzalez-Guzman M, Rodriguez L, Lorenzo-Orts L, Pons C, Sarrion-Perdigones A, Fernandez M a, Peirats-Llobet M, Forment J, Moreno-Alvero M, Cutler SR, Albert A, Granell A, Rodriguez PL (2014) Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance. J Exp Bot 65:1–14. doi: 10.1093/jxb/eru219González-Guzmán M, Apostolova N, Bellés JM, Barrero JM, Piqueras P, Ponce MR, Micol JL, Serrano R, Rodríguez PL (2002) The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14:1833–1846. doi: 10.1105/tpc.002477.developmentHsu F-C, Chou M-Y, Peng H-P, Chou S-J, Shih M-C (2011) Insights into hypoxic systemic responses based on analyses of transcriptional regulation in Arabidopsis. PLoS ONE 6:e28888. doi: 10.1371/journal.pone.0028888Krochko JE, Abrams GD, Loewen MK, Abrams SR, Cutler AJ (1998) (+)-Abscisic Acid 8-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiol 860:849–860. doi: 10.1104/pp.118.3.849Lawlor DW (2013) Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J Exp Bot 64:83–108. doi: 10.1093/jxb/ers326Lee SC, Luan S (2012) ABA signal transduction at the crossroad of biotic and abiotic stress responses. Plant Cell Environ 35:53–60. doi: 10.1111/j.1365-3040.2011.02426.xLiu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406Mittal A, Gampala SSL, Ritchie GL, Payton P, Burke JJ, Rock CD (2014) Related to ABA-Insensitive3(ABI3)/Viviparous1 and AtABI5 transcription factor coexpression in cotton enhances drought stress adaptation. Plant Biotechnol J 12:578–589. doi: 10.1111/pbi.12162Naika M, Shameer K, Mathew OK, Gowda R, Sowdhamini R (2013) STIFDB2: an updated version of plant stress-responsive transcription factor database with additional stress signals, stress-responsive transcription factor binding sites and stress-responsive genes in Arabidopsis and rice. Plant Cell Physiol 54:e8. doi: 10.1093/pcp/pcs185Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185. doi: 10.1146/annurev.arplant.56.032604.144046Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N (2006) CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141:97–107. doi: 10.1104/pp.106.079475.1Okamoto M, Peterson FC, Defries A, Park S-Y, Endo A, Nambara E, Volkman BF, Cutler SR (2013) Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proc Natl Acad Sci USA 110:12132–12137. doi: 10.1073/pnas.1305919110Priest DM, Ambrose SJ, Vaistij FE, Elias L, Higgins GS, Ross ARS, Abrams SR, Bowles DJ (2006) Use of the glucosyltransferase UGT71B6 to disturb abscisic acid homeostasis in Arabidopsis thaliana. Plant J 46:492–502. doi: 10.1111/j.1365-313X.2006.02701.xRitchie M, Phipson B, Wu D, Hu Y, Law C, Shi W, Smyth G (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47Rodríguez-Gamir J, Ancillo G, González-Mas MC, Primo-Millo E, Iglesias DJ, Forner-Giner MA (2011) Root signalling and modulation of stomatal closure in flooded citrus seedlings. Plant Physiol Biochem 49:636–645. doi: 10.1016/j.plaphy.2011.03.003Romero P, Lafuente MT, Rodrigo MJ (2012a) The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration. J Exp Bot 63:4931–4945Romero P, Rodrigo MJ, Alférez F, Ballester A-R, González-Candelas L, Zacarías L, Lafuente MT (2012b) Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant. J Exp Bot 63:2753–2767. doi: 10.1093/jxb/err461Saika H, Okamoto M, Miyoshi K, Kushiro T, Shinoda S, Jikumaru Y, Fujimoto M, Arikawa T, Takahashi H, Ando M, Arimura S-I, Miyao A, Hirochika H, Kamiya Y, Tsutsumi N, Nambara E, Nakazono M (2007) Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8′-hydroxylase in rice. Plant Cell Physiol 48:287–298. doi: 10.1093/pcp/pcm003Santiago J, Dupeux F, Betz K, Antoni R, Gonzalez-Guzman M, Rodriguez L, Márquez JA, Rodriguez PL (2012) Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs. Plant Sci 182:3–11. doi: 10.1016/j.plantsci.2010.11.014Schroeder JI, Nambara E (2006) A quick release mechanism for abscisic acid. Cell 126:1023–1025. doi: 10.1016/j.cell.2006.09.001Seiler C, Harshavardhan VT, Rajesh K, Reddy PS, Strickert M, Rolletschek H, Scholz U, Wobus U, Sreenivasulu N (2011) ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. J Exp Bot 62:2615–2632. doi: 10.1093/jxb/erq446Shimamura S, Yoshioka T, Yamamoto R, Hiraga S, Nakamura T, Shimada S, Komatsu S (2014) Role of abscisic acid in flood-induced secondary aerenchyma formation in soybean (Glycine max) hypocotyls. Plant Prod Sci 17:131–137. doi: 10.1626/pps.17.131Szostkiewicz I, Richter K, Kepka M, Demmel S, Ma Y, Korte A, Assaad FF, Christmann A, Grill E (2010) Closely related receptor complexes differ in their ABA selectivity and sensitivity. Plant J 61:25–35. doi: 10.1111/j.1365-313X.2009.04025.xTanaka H, Osakabe Y, Katsura S, Mizuno S, Maruyama K, Kusakabe K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis. Plant J 70:599–613. doi: 10.1111/j.1365-313X.2012.04901.xValdés AE, Övernäs E, Johansson H, Rada-Iglesias A, Engström P (2012) The homeodomain-leucine zipper (HD-Zip) class I transcription factors ATHB7 and ATHB12 modulate abscisic acid signalling by regulating protein phosphatase 2C and abscisic acid receptor gene activities. Plant Mol Biol 80:405–418. doi: 10.1007/s11103-012-9956-4Weng J-K, Ye M, Noel JP (2016) Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell 166:881–893Yamaguchi M, Sharp RE (2010) Complexity and coordination of root growth at low water potentials: recent advances from transcriptomic and proteomic analyses. Plant Cell Environ 33:590–603. doi: 10.1111/j.1365-3040.2009.02064.xYoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21C:133–139. doi: 10.1016/j.pbi.2014.07.009Zhao Y, Xing L, Wang X, Hou Y-H, Gao J, Wang P, Duan C-G, Zhu X, Zhu J-K (2014) The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Sci Signal 7:ra53Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66:675–683. doi: 10.1007/s11103-008-9298-

    Data from: Attenuated accumulation of jasmonates modifies stomatal responses to water deficit

    No full text
    To determine whether drought-induced root jasmonate [jasmonic acid (JA) and jasmonic acid-isoleucine (JA-Ile)] accumulation affected shoot responses to drying soil, near-isogenic wild-type (WT) tomato (Solanum lycopersicum cv. Castlemart) and the def-1 mutant (which fails to accumulate jasmonates during water deficit) were self- and reciprocally grafted. Rootstock hydraulic conductance was entirely rootstock dependent and significantly lower in def-1, yet def-1 scions maintained a higher leaf water potential as the soil dried due to their lower stomatal conductance (gs). Stomatal sensitivity to drying soil (the slope of gsversus soil water content) was low in def-1 self-grafts but was normalized by grafting onto WT rootstocks. Although soil drying increased 12-oxo-phytodienoic acid (OPDA; a JA precursor and putative antitranspirant) concentrations in def-1 scions, foliar JA accumulation was negligible and foliar ABA accumulation reduced compared with WT scions. A WT rootstock increased drought-induced ABA and JA accumulation in def-1 scions, but decreased OPDA accumulation. Xylem-borne jasmonates were biologically active, since supplying exogenous JA via the transpiration stream to detached leaves decreased transpiration of WT seedlings but had the opposite effect in def-1. Thus foliar accumulation of both ABA and JA at WT levels is required for both maximum (well-watered) gs and stomatal sensitivity to drying soil

    A customizable method to characterize Arabidopsis thaliana transpiration under drought conditions

    Get PDF
    Background Characterization of the dynamic response of plant transpiration to decreasing soil water content in a reproducible way is required for the correct phenotyping of traits related to water saving strategies. Nowadays, an increasing number of automated high throughput platforms are available, but their development requires a great economic investment and it is not always desirable/feasible to outsource these analyses. We propose a medium-throughput protocol to characterize transpiration responses to decreasing soil moisture in a quantitative and highly reproducible way with a minimum investment of resources. Results The quantitative characterization of plant responses to a decreasing soil water content using our phenotyping platform has showed high reproducibility between different experiments. The proposed irrigation strategy allowed us to harvest plants ranging from a well-watered condition to the loss-of-turgor point in a predictable and controlled way. Coupling this protocol with hormone profiling allows investigation of hormonal responses (metabolite accumulation as well as plant sensitivity) to water stress. As a proof-of-concept, we have characterized the dynamic responses of leaf transpiration to decreasing soil water contents in an abscisic acid (ABA) deficient genotype (aba1-1) as well as in genotypes with altered sensitivity to ABA (abi1-1 and hab1-1abi1-1), which are insensitive and hypersensitive to ABA, respectively. Conclusions This protocol allows for assessment of quantitative differences in rosette transpiration responses to water depletion in both ABA biosynthesis mutants and genotypes with altered sensitivity to the hormone. Data indicate a correlation between ABA levels and/or hormone perception and growth rate and/or water content. The protocol guarantees the correct application of water stress to adult plants, which is essential to understand responses of mutants and/or natural accessions

    PYL8 ABA receptors of Phoenix dactylifera play a crucial role in response to abiotic stress and are stabilized by ABA.

    Get PDF
    The identification of those prevalent abscisic acid (ABA) receptors and molecular mechanisms that trigger drought adaptation in crops well adapted to harsh conditions such as date palm (Phoenix dactylifera, Pd) sheds light on plant-environment interactions. We reveal that PdPYL8-like receptors are predominantly expressed under abiotic stress, with Pd27 being the most expressed receptor in date palm. Therefore, subfamily I PdPYL8-like receptors have been selected for ABA signaling during abiotic stress response in this crop. Biochemical characterization of PdPYL8-like and PdPYL1-like receptors revealed receptor- and ABA-dependent inhibition of PP2Cs, which triggers activation of the pRD29B-LUC reporter in response to ABA. PdPYLs efficiently abolish PP2C-mediated repression of ABA signaling, but loss of the Trp lock in the seed-specific AHG1-like phosphatase PdPP2C79 markedly impairs its inhibition by ABA receptors. Characterization of Arabidopsis transgenic plants that express PdPYLs shows enhanced ABA signaling in seed, root, and guard cells. Specifically, Pd27-overexpressing plants showed lower ABA content and were more efficient than the wild type in lowering transpiration at negative soil water potential, leading to enhanced drought tolerance. Finally, PdPYL8-like receptors accumulate after ABA treatment, which suggests that ABA-induced stabilization of these receptors operates in date palm for efficient boosting of ABA signaling in response to abiotic stress
    corecore