176 research outputs found

    Parity Violating Measurements of Neutron Densities

    Get PDF
    Parity violating electron nucleus scattering is a clean and powerful tool for measuring the spatial distributions of neutrons in nuclei with unprecedented accuracy. Parity violation arises from the interference of electromagnetic and weak neutral amplitudes, and the Z0Z^0 of the Standard Model couples primarily to neutrons at low Q2Q^2. The data can be interpreted with as much confidence as electromagnetic scattering. After briefly reviewing the present theoretical and experimental knowledge of neutron densities, we discuss possible parity violation measurements, their theoretical interpretation, and applications. The experiments are feasible at existing facilities. We show that theoretical corrections are either small or well understood, which makes the interpretation clean. The quantitative relationship to atomic parity nonconservation observables is examined, and we show that the electron scattering asymmetries can be directly applied to atomic PNC because the observables have approximately the same dependence on nuclear shape.Comment: 38 pages, 7 ps figures, very minor changes, submitted to Phys. Rev.

    Frame Theory for Signal Processing in Psychoacoustics

    Full text link
    This review chapter aims to strengthen the link between frame theory and signal processing tasks in psychoacoustics. On the one side, the basic concepts of frame theory are presented and some proofs are provided to explain those concepts in some detail. The goal is to reveal to hearing scientists how this mathematical theory could be relevant for their research. In particular, we focus on frame theory in a filter bank approach, which is probably the most relevant view-point for audio signal processing. On the other side, basic psychoacoustic concepts are presented to stimulate mathematicians to apply their knowledge in this field

    Chemical and physical defense traits in two sexual forms of opuntia robusta in Central Eastern Mexico

    Get PDF
    Sexually dimorphic plants provide an excellent opportunity for examining the differences in the extent of their defense against herbivores because they exhibit sex-related differences in reproductive investment. Such differences enable comparison of the sex with high reproduction expenses with the sex that expends less. The more costly sex is usually also better defended against herbivores. Generally, females are considered more valuable than hermaphrodites in terms of fitness; however, hermaphrodites are more valuable if they can produce seed by autonomous selfing, provided that the inbreeding depression is low and pollen is limited. We studied a gynodioecious population of Opuntia robusta from Central-Eastern Mexico, which has been reported to be trioecious, dioecious, or hermaphrodite, and addressed the following questions: 1) Is the hermaphrodite's reproductive output higher than the female's, and are hermaphrodites thus better defended? 2) Are plant tissues differentially defended? 3) Do trade-offs exist among different physical defense traits? and 4) among physical and chemical defense traits? We found that 1) hermaphrodites had a higher seed output and more spines per areola than females and that their spines contained less moisture. Non-reproductive hermaphrodite cladodes contained more total phenolic compounds (TPCs) than female ones. In addition, 2) hermaphrodite reproductive cladodes bore more spines than female cladodes, and 3) and 4) we found a negative relationship between spine number per areola and areola number per cladode and a positive relationship between spine number per areola per plant and TPC concentration per plant. Non-reproductive hermaphrodite cladodes contained a higher concentration of TPCs than female cladodes, and parental cladodes contained fewer TPCs than both reproductive and empty cladodes

    The relationship between cadence, pedalling technique and gross efficiency in cycling

    Get PDF
    Technique and energy saving are two variables often considered as important for performance in cycling and related to each other. Theoretically, excellent pedalling technique should give high gross efficiency (GE). The purpose of the present study was to examine the relationship between pedalling technique and GE. 10 well-trained cyclists were measured for GE, force effectiveness (FE) and dead centre size (DC) at a work rate corresponding to ~75% of VO2max during level and inclined cycling, seat adjusted forward and backward, at three different cadences around their own freely chosen cadence (FCC) on an ergometer. Within subjects, FE, DC and GE decreased as cadence increased (p < 0.001). A strong relationship between FE and GE was found, which was to great extent explained by FCC. The relationship between cadence and both FE and GE, within and between subjects, was very similar, irrespective of FCC. There was no difference between level and inclined cycling position. The seat adjustments did not affect FE, DC and GE or the relationship between them. Energy expenditure is strongly coupled to cadence, but force effectiveness, as a measure for pedalling technique, is not likely the cause of this relationship. FE, DC and GE are not affected by body orientation or seat adjustments, indicating that these parameters and the relationship between them are robust to coordinative challenges within a range of cadence, body orientation and seat position that is used in regular cycling

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Evidentialism and Moral Encroachment

    Get PDF
    Moral encroachment holds that the epistemic justification of a belief can be affected by moral factors. If the belief might wrong a person or group more evidence is required to justify the belief. Moral encroachment thereby opposes evidentialism, and kindred views, which holds that epistemic justification is determined solely by factors pertaining to evidence and truth. In this essay I explain how beliefs such as ‘that woman is probably an administrative assistant’—based on the evidence that most women employees at the firm are administrative assistants—motivate moral encroachment. I then describe weaknesses of moral encroachment. Finally I explain how we can countenance the moral properties of such beliefs without endorsing moral encroachment, and I argue that the moral status of such beliefs cannot be evaluated independently from the understanding in which they are embedded

    Collateral circulation: Past and present

    Get PDF
    Following an arterial occlusion outward remodeling of pre-existent inter-connecting arterioles occurs by proliferation of vascular smooth muscle and endothelial cells. This is initiated by deformation of the endothelial cells through increased pulsatile fluid shear stress (FSS) caused by the steep pressure gradient between the high pre-occlusive and the very low post-occlusive pressure regions that are interconnected by collateral vessels. Shear stress leads to the activation and expression of all NOS isoforms and NO production, followed by endothelial VEGF secretion, which induces MCP-1 synthesis in endothelium and in the smooth muscle of the media. This leads to attraction and activation of monocytes and T-cells into the adventitial space (peripheral collateral vessels) or attachment of these cells to the endothelium (coronary collaterals). Mononuclear cells produce proteases and growth factors to digest the extra-cellular scaffold and allow motility and provide space for the new cells. They also produce NO from iNOS, which is essential for arteriogenesis. The bulk of new tissue production is carried by the smooth muscles of the media, which transform their phenotype from a contractile into a synthetic and proliferative one. Important roles are played by actin binding proteins like ABRA, cofilin, and thymosin beta 4 which determine actin polymerization and maturation. Integrins and connexins are markedly up-regulated. A key role in this concerted action which leads to a 2-to-20 fold increase in vascular diameter, depending on species size (mouse versus human) are the transcription factors AP-1, egr-1, carp, ets, by the Rho pathway and by the Mitogen Activated Kinases ERK-1 and -2. In spite of the enormous increase in tissue mass (up to 50-fold) the degree of functional restoration of blood flow capacity is incomplete and ends at 30% of maximal conductance (coronary) and 40% in the vascular periphery. The process of arteriogenesis can be drastically stimulated by increases in FSS (arterio-venous fistulas) and can be completely blocked by inhibition of NO production, by pharmacological blockade of VEGF-A and by the inhibition of the Rho-pathway. Pharmacological stimulation of arteriogenesis, important for the treatment of arterial occlusive diseases, seems feasible with NO donors

    Light pollution: The possible consequences of excessive illumination on retina

    Get PDF
    Light is the visible part of the electromagnetic radiation within a range of 380-780 nm; (400-700 on primates retina). In vertebrates, the retina is adapted to capturing light photons and transmitting this information to other structures in the central nervous system. In mammals, light acts directly on the retina to fulfill two important roles: (1) the visual function through rod and cone photoreceptor cells and (2) non-image forming tasks, such as the synchronization of circadian rhythms to a 24 h solar cycle, pineal melatonin suppression and pupil light reflexes. However, the excess of illumination may cause retinal degeneration or accelerate genetic retinal diseases. In the last century human society has increased its exposure to artificial illumination, producing changes in the Light/Dark cycle, as well as in light wavelengths and intensities. Although, the consequences of unnatural illumination or light pollution have been underestimated by modern society in its way of life, light pollution may have a strong impact on people's health. The effects of artificial light sources could have direct consequences on retinal health. Constant exposure to different wavelengths and intensities of light promoted by light pollution may produce retinal degeneration as a consequence of photoreceptor or retinal pigment epithelium cells death. In this review we summarize the different mechanisms of retinal damage related to the light exposure, which generates light pollution.Fil: Contin, Maria Ana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Centro de Investigaciones en QuĂ­mica BiolĂłgica de CĂłrdoba. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂ­micas. Centro de Investigaciones en QuĂ­mica BiolĂłgica de CĂłrdoba; ArgentinaFil: Benedetto, MarĂ­a Mercedes. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Centro de Investigaciones en QuĂ­mica BiolĂłgica de CĂłrdoba. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂ­micas. Centro de Investigaciones en QuĂ­mica BiolĂłgica de CĂłrdoba; ArgentinaFil: Quinteros Quintana, MarĂ­a Luz. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Centro de Investigaciones en QuĂ­mica BiolĂłgica de CĂłrdoba. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂ­micas. Centro de Investigaciones en QuĂ­mica BiolĂłgica de CĂłrdoba; ArgentinaFil: Guido, Mario Eduardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Centro de Investigaciones en QuĂ­mica BiolĂłgica de CĂłrdoba. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂ­micas. Centro de Investigaciones en QuĂ­mica BiolĂłgica de CĂłrdoba; Argentin

    Gradients and Modulation of K+ Channels Optimize Temporal Accuracy in Networks of Auditory Neurons

    Get PDF
    Accurate timing of action potentials is required for neurons in auditory brainstem nuclei to encode the frequency and phase of incoming sound stimuli. Many such neurons express “high threshold” Kv3-family channels that are required for firing at high rates (>∌200 Hz). Kv3 channels are expressed in gradients along the medial-lateral tonotopic axis of the nuclei. Numerical simulations of auditory brainstem neurons were used to calculate the input-output relations of ensembles of 1–50 neurons, stimulated at rates between 100–1500 Hz. Individual neurons with different levels of potassium currents differ in their ability to follow specific rates of stimulation but all perform poorly when the stimulus rate is greater than the maximal firing rate of the neurons. The temporal accuracy of the combined synaptic output of an ensemble is, however, enhanced by the presence of gradients in Kv3 channel levels over that measured when neurons express uniform levels of channels. Surprisingly, at high rates of stimulation, temporal accuracy is also enhanced by the occurrence of random spontaneous activity, such as is normally observed in the absence of sound stimulation. For any pattern of stimulation, however, greatest accuracy is observed when, in the presence of spontaneous activity, the levels of potassium conductance in all of the neurons is adjusted to that found in the subset of neurons that respond better than their neighbors. This optimization of response by adjusting the K+ conductance occurs for stimulus patterns containing either single and or multiple frequencies in the phase-locking range. The findings suggest that gradients of channel expression are required for normal auditory processing and that changes in levels of potassium currents across the nuclei, by mechanisms such as protein phosphorylation and rapid changes in channel synthesis, adapt the nuclei to the ongoing auditory environment
    • 

    corecore