188 research outputs found

    Vaccines against toxoplasma gondii : challenges and opportunities

    Get PDF
    Development of vaccines against Toxoplasma gondii infection in humans is of high priority, given the high burden of disease in some areas of the world like South America, and the lack of effective drugs with few adverse effects. Rodent models have been used in research on vaccines against T. gondii over the past decades. However, regardless of the vaccine construct, the vaccines have not been able to induce protective immunity when the organism is challenged with T. gondii, either directly or via a vector. Only a few live, attenuated T. gondii strains used for immunization have been able to confer protective immunity, which is measured by a lack of tissue cysts after challenge. Furthermore, challenge with low virulence strains, especially strains with genotype II, will probably be insufficient to provide protection against the more virulent T. gondii strains, such as those with genotypes I or II, or those genotypes from South America not belonging to genotype I, II or III. Future studies should use animal models besides rodents, and challenges should be performed with at least one genotype II T. gondii and one of the more virulent genotypes. Endpoints like maternal-foetal transmission and prevention of eye disease are important in addition to the traditional endpoint of survival or reduction in numbers of brain cysts after challenge

    ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries

    Get PDF
    This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors

    Argyrin B a non-competitive inhibitor of the human immunoproteasome exhibiting preference for β1i

    Get PDF
    Inhibitors of the proteasome have found broad therapeutic applications however, they show severe toxicity due to the abundance of proteasomes in healthy cells. In contrast, inhibitors of the immunoproteasome, which is upregulated during disease states, are less toxic and have increased therapeutic potential including against autoimmune disorders. In this project, we report argyrin B, a natural product cyclic peptide to be a reversible, non-competitive inhibitor of the immunoproteasome. Argyrin B showed selective inhibition of the β5i and β1i sites of the immunoproteasome over the β5c and β1c sites of the constitutive proteasome with nearly 20-fold selective inhibition of β1i over the homologous β1c. Molecular modelling attributes the β1i over β1c selectivity to the small hydrophobic S1 pocket of β1i and β5i over β5c to site-specific amino acid variations that enable additional bonding interactions and stabilization of the binding conformation. These findings facilitate the design of immunoproteasome selective and reversible inhibitors that may have a greater therapeutic potential and lower toxicity

    Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures

    Get PDF
    Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, and/or overfitting. Here, we overcome these limitations with the largest multi-site sample size to date (N = 5365) to provide a generalizable ML classification benchmark of major depressive disorder (MDD) using shallow linear and non-linear models. Leveraging brain measures from standardized ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced accuracy dropped to approximately 52%. Accuracy results close to random chance levels were also observed in stratified groups according to age of onset, antidepressant use, number of episodes and sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects

    Effects of copy number variations on brain structure and risk for psychiatric illness: Large-scale studies from the ENIGMA working groups on CNVs

    Get PDF
    The Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q-ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest-ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi-site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene-dosage effects on distinct brain regions also emerged, providing further insight into genotype–phenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This “genotype-first” approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior

    Genetic variants for head size share genes and pathways with cancer

    Get PDF
    The size of the human head is determined by growth in the first years of life, while the rest of the body typically grows until early adulthood1. Such complex developmental processes are regulated by various genes and growth pathways2. Rare genetic syndromes have revealed genes that affect head size3, but the genetic drivers of variation in head size within the general population remain largely unknown. To elucidate biological pathways underlying the growth of the human head, we performed the largest genome-wide association study on human head size to date (N = 79,107). We identified 67 genetic loci, 50 of which are novel, and found that these loci are preferentially associated with head size and mostly independent from height. In subsequent neuroimaging analyses, the majority of genetic variants demonstrated widespread effects on the brain, whereas the effects of 17 variants could be localized to one or two specific brain regions. Through hypothesis-free approaches, we find a strong overlap of head size variants with both cancer pathways and cancer genes. Gene set analyses showed enrichment for different types of cancer and the p53, Wnt and ErbB signalling pathway. Genes overlapping or close to lead variants – such as TP53, PTEN and APC – were enriched for genes involved in macrocephaly syndromes (up to 37-fold) and high-fidelity cancer genes (up to 9-fold), whereas this enrichment was not seen for human height variants. This indicates that genes regulating early brain and cranial growth are associated with a propensity to neoplasia later in life, irrespective of height. Our results warrant further investigations of the link between head size and cancer, as well as its clinical implications in the general population

    BAFF Promotes Th17 Cells and Aggravates Experimental Autoimmune Encephalomyelitis

    Get PDF
    BAFF, in addition to promoting B cell survival and differentiation, may affect T cells. The objective of this study was to determine the effect of BAFF on Th17 cell generation and its ramifications for the Th17 cell-driven disease, EAE.Th17 cells were increased in BAFF-Tg B6 (B6.BTg) mice and decreased in B6.Baff(-/-) mice. Th17 cells in B6.Baff(-/-) mice bearing a BAFF Tg (B6.Baff(-/-).BTg mice) were identical to those in B6.BTg mice, indicating that membrane BAFF is dispensable for Th17 cell generation as long as soluble BAFF is plentiful. In T + non-T cell criss-cross co-cultures, Th17 cell generation was greatest in cultures containing B6.BTg T cells and lowest in cultures containing B6.Baff(-/-) T cells, regardless of the source of non-T cells. In cultures containing only T cells, Th17 cell generation followed an identical pattern. CD4(+) cell expression of CD126 (IL-6R α chain) was increased in B6.BTg mice and decreased in B6.Baff(-/-) mice, and activation of STAT3 following stimulation with IL-6 + TGF-β was also greatest in B6.BTg cells and lowest in B6.Baff(-/-) cells. EAE was clinically and pathologically most severe in B6.BTg mice and least severe in B6.Baff(-/-) mice and correlated with MOG(35-55) peptide-induced Th17 cell responses.Collectively, these findings document a contribution of BAFF to pathogenic Th17 cell responses and suggest that BAFF antagonism may be efficacious in Th17 cell-driven diseases

    Genetic variants associated with longitudinal changes in brain structure across the lifespan

    Get PDF
    Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson’s disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
    corecore