35 research outputs found

    Screening of Bacterial Quorum Sensing Inhibitors in a Vibrio fischeri LuxR-Based Synthetic Fluorescent E. coli Biosensor

    Get PDF
    A library of 23 pure compounds of varying structural and chemical characteristics was screened for their quorum sensing (QS) inhibition activity using a synthetic fluorescent Escherichia coli biosensor that incorporates a modified version of lux regulon of Vibrio fischeri. Four such compounds exhibited QS inhibition activity without compromising bacterial growth, namely, phenazine carboxylic acid (PCA), 2-heptyl-3-hydroxy-4-quinolone (PQS), 1H-2-methyl-4-quinolone (MOQ) and genipin. When applied at 50 µM, these compounds reduced the QS response of the biosensor to 33.7% ± 2.6%, 43.1% ± 2.7%, 62.2% ± 6.3% and 43.3% ± 1.2%, respectively. A series of compounds only showed activity when tested at higher concentrations. This was the case of caffeine, which, when applied at 1 mM, reduced the QS to 47% ± 4.2%. In turn, capsaicin, caffeic acid phenethyl ester (CAPE), furanone and polygodial exhibited antibacterial activity when applied at 1mM, and reduced the bacterial growth by 12.8% ± 10.1%, 24.4% ± 7.0%, 91.4% ± 7.4% and 97.5% ± 3.8%, respectively. Similarly, we confirmed that trans-cinnamaldehyde and vanillin, when tested at 1 mM, reduced the QS response to 68.3% ± 4.9% and 27.1% ± 7.4%, respectively, though at the expense of concomitantly reducing cell growth by 18.6% ± 2.5% and 16% ± 2.2%, respectively. Two QS natural compounds of Pseudomonas aeruginosa, namely PQS and PCA, and the related, synthetic compounds MOQ, 1H-3-hydroxyl-4-quinolone (HOQ) and 1H-2-methyl-3-hydroxyl-4-quinolone (MHOQ) were used in molecular docking studies with the binding domain of the QS receptor TraR as a target. We offer here a general interpretation of structure-function relationships in this class of compounds that underpins their potential application as alternatives to antibiotics in controlling bacterial virulence

    Diversification linked to larval host plant in the butterfly Eumedonia eumedon

    Get PDF
    It is widely accepted that the relationship between phytophagous insects and their host plants influences insect diversification. However, studies addressed at documenting host-associated genetic differentiation (HAD) and the mechanisms that drive reproductive isolation in host-associated lineages (or host races) are still scarce relative to insect diversity. To uncover further evidence on the HAD processes in Lepidoptera, we investigated the genetic structure of the geranium argus butterfly (Eumedonia eumedon) and tested for isolation by ecology (IBE) vs. isolation by distance (IBD). Genomic data revealed an array of host races (three of them in the same mountain range, the Cantabrian Mountains, northern Iberia) at apparently distinct levels of reproductive isolation. We found a pattern of IBE mediated by HAD at both local and European scales, in which genetic differentiation between populations and individuals correlated significantly with the taxonomic relatedness of the host plants. IBD was significant only when considered at the wider European scale. We hypothesize that, locally, HAD between Geranium-feeding populations was caused (at least partially) by allochrony, that is via adaptation of adult flight time to the flowering period of each host plant species. Nevertheless, the potential reproductive isolation between populations using Erodium and populations using Geranium cannot be explained by allochrony or IBD, and other mechanisms are expected to be at play.Peer reviewe

    Effect of the ultrastructure of chitosan nanoparticles in colloidal stability, quorum quenching and antibacterial activities

    Get PDF
    We have fabricated two types of crosslinked chitosan-based nanoparticles (NPs), namely (1) ionically crosslinked with tripolyphosphate (TPP), designated as IC-NPs and (2) dually co-crosslinked (ionically and covalently with TPP and genipin, respectively) termed CC-NPs. The two types of NPs were physichochemically characterized by means of DLS-NIBS, synchrotron SAXS and M3-PALS (zeta potential). First, we found that covalent co-crosslinking of ionically pre-crosslinked nanoparticles yielded monodisperse CC-NPs in the size range of ∼200 nm, whereas the parental IC-NPs remained highly polydisperse. While both types of chitosan nanoparticles displayed a core-shell structure, as determined by synchrotron SAXS, only the structure of CC-NPs remained stable at long incubation times. This enhanced structural robustness of CC-NPs was likely responsible of their superior colloidal stability even in biological medium. Second, we explored the antimicrobial and quorum sensing inhibition activity of both types of nanoparticles. We found that CC-NPs had lower long-term toxicity than IC-NPs. In contrast, sub-lethal doses of IC-NPs consistently displayed higher levels of quorum quenching activity than CC-NPs. Thus, this work underscores the influence of the NP’s ultrastructure on their colloidal and biological properties. While the cellular and molecular mechanisms at play are yet to be fully elucidated, our results broaden the spectrum of use of chitosan-based nanobiomaterialsin the development of antibiotic-free approaches against Gram-negative pathogenic bacteria

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease

    Covalently and ionically, dually crosslinked chitosan nanoparticles block quorum sensing and affect bacterial cell growth on a cell-density dependent manner

    No full text
    In our efforts to improve the quality and stability of chitosan nanoparticles (NPs), we describe here a new type of chitosan NPs dually crosslinked with genipin and sodium tripolyphosphate (TPP) that display quorum quenching activity. These NPs were created using a simplified and robust procedure that resulted in improved physicochemical properties and enhanced stability. This procedure involves the covalent crosslinking of chitosan with genipin, followed by the formation of chitosan NPs by ionic gelation with TPP. We have optimized the conditions to obtain genipin pre-crosslinked nanoparticles (PC-NPs) with positive ς-potential (~ +30 mV), small diameter (~130 nm), and low size distributions (PdI = 0.1–0.2). PC-NPs present physicochemical properties that are comparable to those of other dually crosslinked chitosan NPs fabricated with different protocols. In contrast to previously characterized NPs, however, we found that PC-NPs strongly reduce the acyl homoserine lactone (AHL)-mediated quorum sensing response of an Escherichia coli fluorescent biosensor. Thus, PC-NPs combine, in a single design, the stability of dually crosslinked chitosan NPs and the quorum quenching activity of ionically crosslinked NPs. Similar to other chitosan NPs, the mode of action of PC-NPs is consistent with the existence of a “stoichiometric ratio” of NP/bacterium, at which the positive charge of the NPs counteracts the negative ς-potential of the bacterial envelope. Notably, we found that the time of the establishment of the “stoichiometric ratio” is a function of the NP concentration, implying that these NPs could be ideal for applications aiming to target of bacterial populations at specific cell densities. We are confident that our PC-NPs are up-and-coming candidates for the design of efficient anti-quorum sensing and a new generation antimicrobial strategies

    Diversification linked to larval host plant in the butterfly Eumedonia eumedon

    No full text
    Abstract It is widely accepted that the relationship between phytophagous insects and their host plants influences insect diversification. However, studies addressed at documenting host-associated genetic differentiation (HAD) and the mechanisms that drive reproductive isolation in host-associated lineages (or host races) are still scarce relative to insect diversity. To uncover further evidence on the HAD processes in Lepidoptera, we investigated the genetic structure of the geranium argus butterfly (Eumedonia eumedon) and tested for isolation by ecology (IBE) vs. isolation by distance (IBD). Genomic data revealed an array of host races (three of them in the same mountain range, the Cantabrian Mountains, northern Iberia) at apparently distinct levels of reproductive isolation. We found a pattern of IBE mediated by HAD at both local and European scales, in which genetic differentiation between populations and individuals correlated significantly with the taxonomic relatedness of the host plants. IBD was significant only when considered at the wider European scale. We hypothesize that, locally, HAD between Geranium-feeding populations was caused (at least partially) by allochrony, that is via adaptation of adult flight time to the flowering period of each host plant species. Nevertheless, the potential reproductive isolation between populations using Erodium and populations using Geranium cannot be explained by allochrony or IBD, and other mechanisms are expected to be at play

    Affinity Protein-Based FRET Tools for Cellular Tracking of Chitosan Nanoparticles and Determination of the Polymer Degree of Acetylation

    No full text
    Chitosan (CS) is a family of linear polysaccharides with diverse applications in medicine, agriculture, and industry. Its bioactive properties are determined by parameters such as the degree of acetylation (DA), but current techniques to measure the DA are laborious and require large amounts of substrate and sophisticated equipment. It is also challenging to monitor the fate of chitosan-based nanoparticles (CS-NPs) in vitro because current tools cannot measure their enzymatic or chemical degradation. We have developed a method based on the Förster resonance energy transfer (FRET) that occurs between two independent fluorescent proteins fused to a CS-binding domain, who interact with CS polymers or CS-NPs. We used this approach to calibrate a simple and rapid analytical method that can determine the DA of CS substrates. We showed unequivocally that FRET occurs on the surface of CS-NPs and that the FRET signal is quenched by enzymatic degradation of the CS substrate. Finally, we provide in vitro proof-of-concept that these approaches can be used to label CS-NPs and colocalize them following their interactions with mammalian cells

    Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness.

    No full text
    Diet may be modified seasonally or by biogeographic, demographic or cultural shifts. It can differentially influence mitochondrial bioenergetics, retrograde signalling to the nuclear genome, and anterograde signalling to mitochondria. All these interactions have the potential to alter the frequencies of mtDNA haplotypes (mitotypes) in nature and may impact human health. In a model laboratory system, we fed four diets varying in Protein: Carbohydrate (P:C) ratio (1:2, 1:4, 1:8 and 1:16 P:C) to four homoplasmic Drosophila melanogaster mitotypes (nuclear genome standardised) and assayed their frequency in population cages. When fed a high protein 1:2 P:C diet, the frequency of flies harbouring Alstonville mtDNA increased. In contrast, when fed the high carbohydrate 1:16 P:C food the incidence of flies harbouring Dahomey mtDNA increased. This result, driven by differences in larval development, was generalisable to the replacement of the laboratory diet with fruits having high and low P:C ratios, perturbation of the nuclear genome and changes to the microbiome. Structural modelling and cellular assays suggested a V161L mutation in the ND4 subunit of complex I of Dahomey mtDNA was mildly deleterious, reduced mitochondrial functions, increased oxidative stress and resulted in an increase in larval development time on the 1:2 P:C diet. The 1:16 P:C diet triggered a cascade of changes in both mitotypes. In Dahomey larvae, increased feeding fuelled increased β-oxidation and the partial bypass of the complex I mutation. Conversely, Alstonville larvae upregulated genes involved with oxidative phosphorylation, increased glycogen metabolism and they were more physically active. We hypothesise that the increased physical activity diverted energy from growth and cell division and thereby slowed development. These data further question the use of mtDNA as an assumed neutral marker in evolutionary and population genetic studies. Moreover, if humans respond similarly, we posit that individuals with specific mtDNA variations may differentially metabolise carbohydrates, which has implications for a variety of diseases including cardiovascular disease, obesity, and perhaps Parkinson's Disease

    Specific, efficient, and selective inhibition of prokaryotic translation initiation by a novel peptide antibiotic

    No full text
    Many known antibiotics target the translational apparatus, but none of them can selectively inhibit initiation of protein synthesis and/or is prokaryotic-specific. This article describes the properties of GE81112, an effective and prokaryotic-specific initiation inhibitor. GE81112 is a natural tetrapeptide produced by a Streptomyces sp. identified by an in vitro high-throughput screening test developed to find inhibitors of the prokaryotic translational apparatus preferentially acting on steps other than elongation. In vivo GE81112 inhibits protein synthesis but not other cell functions such as DNA duplication, transcription, and cell wall synthesis. In vitro GE81112 was found to target the 30S ribosomal subunit and to interfere with both coded and noncoded P-site binding of fMet-tRNA, thereby selectively inhibiting formation of the 30S initiation complex
    corecore