465 research outputs found

    Assimilation de données d'humidité des sols pour la prévision de crues : comparaison d'un modèle pluie-débit conceptuel et d'un modèle intégrant une interface sol-végétation-atmosphère

    Get PDF
    Le but de cet article est de présenter une méthodologie de mise à jour des paramètres de modèles pluie-débit en période de crue. Elle a été mise au point afin d'améliorer un des aspects de la gestion des réservoirs dans un contexte opérationnel de protection contre les crues: la réduction des incertitudes sur la prévision des débits. L'originalité de la méthode proposée réside dans le fait que l'on utilise non seulement une information sur les débits mais aussi une information sur l'humidité du sol. L'objectif de l'étude est d'évaluer l'intérêt de l'introduction de cette information supplémentaire. Pour cela, les données d'humidité du sol sont introduites au sein du modèle par l'intermédiaire d'une relation de passage établie entre l'humidité mesurée in situ et l'humidité calculée implicitement ou explicitement par les modèles. Cette méthodologie a été testée dans le cadre du projet européen AIMWATER sur quatre sous-bassins de la Seine en amont de Paris (France). Deux modèles pluie-débit sont utilisés dans cette étude, un modèle conceptuel semi-emprique et un modèle conceptuel couplé à un schéma de surface simulant une interface sol-végétation-atmosphère et permettant de calculer l'évolution de l'humidité du sol à différentes profondeurs. Cette approche comparative étudie l'intérêt d'un tel modèle couplé par rapport au modèle conceptuel semi-empirique sans représentation explicite des phénomènes se produisant à l'interface sol-végétation-atmosphère.Improving the accuracy of rainfall-runoff models and in particular their performances in flood prediction is a key point of continental hydrology. Methods have been developed to improve flood prediction in hydrology based on a better compliance of the model with current observations prior to its use in forecasting mode. This operation has been termed updating in hydrology and assimilation in meteorology. The fundamental idea is that if model predictions diverge from observations at a given time, there is little chance that future estimations will approach correct values. The improvement then comes from a correction of the trajectory of the model based on observations during the period preceding the day when a prediction into the immediate or long-term future is desired. This can be dealt with by a correction of model parameters, which is usually called "parameter updating".The inability of rainfall-runoff models to produce correct streamflow values generally translates into parameter uncertainty. Parameter calibration is the means used by a model structure to adjust to a given set of data. Therefore, a parameter updating methodology seems to be a natural way to amend errors in streamflow values. In this paper, a specific methodology of parameter updating is presented. The main feature of this method is that it does not carry out updating by reference only to recent streamflow observations, as classic procedures do, but also to soil moisture measurements, which can be retrieved daily from TDR probes. Indeed, it appears that the integration of soil moisture data allows better control of the evolution of the model and improves its performances, in particular in terms of forecasting.The aim of the research was to assess the usefulness of this additional soil moisture information. To this end, an approach has been suggested that gradually introduces additional information thanks to a constraint relationship between observed and modelled soil moisture. In fact, soil moisture can be calculated implicitly or explicitly by the model when extracting step-by-step the values of the model's store contents. This methodology was put forward for use in the European AIMWATER project on four catchments within the Seine River basin upstream of Paris (France). The other issue addressed in this paper was whether or not it is necessary to use a model that simulates explicitly the evolution of soil moisture at different depths. One can argue that if the model employed does not feature a store that can be identified closely to the observed soil moisture, there would be no possibility of benefiting from such measurements. On the other hand, it can be argued that if soil moisture is a model output, all the information drawn from soil moisture observations will be directed at improving this specific output at the expense of improving streamflow values. To answer this issue, two models were tested. The first model, GR4j, has no explicit counterpart for soil moisture measurements. The second one, GRHum, has been especially developed to introduce a two-layer soil reservoir that simulates the surface and sub-surface soil moisture.Since the aim of the present research was to analyse different ways of accounting for soil moisture, and to identify the one that offers the best prospects, several tests were carried out, using different relationships between observed and modelled soil moisture. Indeed, TDR probes give point measurements of soil moisture at several depths and several store contents can be taken into account in a constraint relationship.First, for both GR4j and GRHum models, tests showed that performances for flood forecasting are significantly improved when assimilating in situ measurements of soil moisture at a daily time-step, especially for the basins where poor simulations are obtained. It is also noteworthy that performances are very dependent on the items taken into account in a constraint relationship.Secondly, the GRHum model did not appear to be more efficient than the GR4j model when assimilating both streamflow and soil moisture data. However, the GRHum model gave the best results when assimilating only streamflow data, and superficial soil moisture seemed to fit the GRHum better than the GR4j model.Finally, although the tests required perfect foreknowledge of rainfall, the results of the research are encouraging from an operational point of view. Another interesting perspective is provided by the Earth Observation data. Indeed, previous studies have shown that soil moisture can be derived from EO data using, for example, microwave spaceborne Synthetic Aperture Radar (SAR) images (QUESNEY et al., 2000). This type of catchment-scale data could be more relevant than a local measure given by TDR probes (PAUWELS et al., 2002)

    Fish Consumption and Ischemic stroke in Southern Sweden

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The relationship between fish intake and stroke incidence has been inconsistent in previous Swedish studies. Here, we report the risk of stroke and fish intake in a cohort from southern Sweden.</p> <p>Findings</p> <p>Data were obtained from an already available population based case-control study where the cases were defined as incident first-time ischemic stroke patients. Complete data on all relevant variables were obtained for 2722 controls and 2469 cases. The data were analyzed with logistic regression analysis. Stroke risk decreased with fat fish intake ([greater than or equal to] 1/week versus <1/month) in both men and women; adjusted pooled Odds Ratio (OR) 0.69, 95% Confidence Interval (CI): 0.54-0.89. However, stroke risk for women increased with intake of lean fish; adjusted OR 1.63 (95% CI: 1.17-2.28), whereas there was no association with men's lean fish intake; adjusted OR 0.97(95% CI: 0.73-1.27). Fish intake was self-reported retrospectively, yielding uncertain exposure assessment and potential recall bias. The findings regarding lean fish could be explained by recall bias if an individual's inclination to report lean fish consumption depended on both disease status and sex. The fact that the association between fat fish intake and stroke was similar in men and women does not support such a differential in recall.</p> <p>Conclusions</p> <p>The results suggest fat fish intake to decrease ischemic stroke risk and lean fish intake to increase women's stroke risk. The inconsistent relationship between fish intake and stroke risk reported in previous studies is further stressed by the results of this study.</p

    Impact of national holidays and weekends on incidence of acute type A aortic dissection repair

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Previous studies have demonstrated that environmental and temporal factors may affect the incidence of acute type A aortic dissection (ATAAD). Here, we aimed to investigate the hypothesis that national holidays and weekends influence the incidence of surgery for ATAAD. For the period 1st of January 2005 until 31st of December 2019, we investigated a hypothesised effect of (country-specific) national holidays and weekends on the frequency of 2995 surgical repairs for ATAAD at 10 Nordic cities included in the Nordic Consortium for Acute Type A Aortic Dissection (NORCAAD) collaboration. Compared to other days, the number of ATAAD repairs were 29% (RR 0.71; 95% CI 0.54–0.94) lower on national holidays and 26% (RR 0.74; 95% CI 0.68–0.82) lower on weekends. As day of week patterns of symptom duration were assessed and the primary analyses were adjusted for period of year, our findings suggest that the reduced surgical incidence on national holidays and weekends does not seem to correspond to seasonal effects or surgery being delayed and performed on regular working days.Peer reviewe

    Once after a full moon : acute type A aortic dissection and lunar phases

    Get PDF
    Publisher Copyright: © 2021 The Author(s) 2021. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery.OBJECTIVES: Acute type A aortic dissection (ATAAD) is a rare but severe condition, routinely treated with emergent cardiac surgery. Many surgeons have the notion that patients with ATAAD tend to come in clusters, but no studies have examined these observations. This investigation was undertaken to study the potential association between the lunar cycle and the incidence of ATAAD. METHODS: We collected information on 2995 patients who underwent ATAAD surgery at centres from the Nordic Consortium for Acute Type A Aortic Dissection collaboration. We cross-referenced the time of surgery with lunar phase using a case-crossover design with 2 different definitions of full moon (>99% illumination and the 7-day full moon period). RESULTS: The period when the moon was illuminated the most (99% definition) did not show any significant increase in incidence for ATAAD surgery. However, when the full moon period was compared with all other moon phases, it yielded a relative risk of 1.08 [95% confidence interval (CI) 1.00-1.17, P = 0.057] and, compared to waxing moon, only the relative risk was 1.11 (95% CI 1.01-1.23, P = 0.027). The peak incidence came 4-6 days after the moon was fully illuminated. CONCLUSIONS: This study found an overrepresentation of surgery for ATAAD during the full moon phase. The explanation for this is not known, but we speculate that sleep deprivation during full moon leads to a temporary increase in blood pressure, which in turn could trigger rupture of the aortic wall. While this finding is interesting, it needs to be corroborated and the clinical implications are debateable.Peer reviewe

    Activation of Type 1 Cannabinoid Receptor (CB1R) promotes neurogenesis in murine subventricular zone cell cultures

    Get PDF
    The endocannabinoid system has been implicated in the modulation of adult neurogenesis. Here, we describe the effect of type 1 cannabinoid receptor (CB1R) activation on self-renewal, proliferation and neuronal differentiation in mouse neonatal subventricular zone (SVZ) stem/progenitor cell cultures. Expression of CB1R was detected in SVZ-derived immature cells (Nestin-positive), neurons and astrocytes. Stimulation of the CB1R by (R)-(+)-Methanandamide (R-m-AEA) increased self-renewal of SVZ cells, as assessed by counting the number of secondary neurospheres and the number of Sox2+/+ cell pairs, an effect blocked by Notch pathway inhibition. Moreover, R-m-AEA treatment for 48 h, increased proliferation as assessed by BrdU incorporation assay, an effect mediated by activation of MAPK-ERK and AKT pathways. Surprisingly, stimulation of CB1R by R-m-AEA also promoted neuronal differentiation (without affecting glial differentiation), at 7 days, as shown by counting the number of NeuN-positive neurons in the cultures. Moreover, by monitoring intracellular calcium concentrations ([Ca2+](i)) in single cells following KCl and histamine stimuli, a method that allows the functional evaluation of neuronal differentiation, we observed an increase in neuronal-like cells. This proneurogenic effect was blocked when SVZ cells were co-incubated with R-m-AEA and the CB1R antagonist AM 251, for 7 days, thus indicating that this effect involves CB1R activation. In accordance with an effect on neuronal differentiation and maturation, R-m-AEA also increased neurite growth, as evaluated by quantifying and measuring the number of MAP2-positive processes. Taken together, these results demonstrate that CB1R activation induces proliferation, self-renewal and neuronal differentiation from mouse neonatal SVZ cell cultures.Fundacao para a Ciencia e a Tecnologia - Portugal [POCTI/SAU-NEU/68465/2006, PTDC/SAU-NEU/104415/2008, PTDC/SAU-NEU/101783/2008, POCTI/SAU-NEU/110838/2009]; Fundacao Calouste Gulbenkian [96542]; Fundacao para a Ciencia e Tecnologiainfo:eu-repo/semantics/publishedVersio

    Tumor Cell-Driven Extracellular Matrix Remodeling Drives Haptotaxis during Metastatic Progression

    Get PDF
    Fibronectin (FN) is a major component of the tumor microenvironment, but its role in promoting metastasis is incompletely understood. Here we show that FN gradients elicit directional movement of breast cancer cells, in vitro and in vivo. Haptotaxis on FN gradients requires direct interaction between α5β1 integrin and Mena, an actin regulator, and involves increases in focal complex signaling and tumor-cell-mediated extracellular matrix (ECM) remodeling. Compared to Mena, higher levels of the pro-metastatic MenaINV isoform associate with α5, which enables 3D haptotaxis of tumor cells towards the high FN concentrations typically present in perivascular space and in the periphery of breast tumor tissue. MenaINV and FN levels were correlated in two breast cancer cohorts, and high levels of MenaINV were significantly associated with increased tumor recurrence as well as decreased patient survival. Our results identify a novel tumor-cell-intrinsic mechanism that promotes metastasis through ECM remodeling and ECM guided directional migration
    corecore