852 research outputs found

    Descriptions of Three New Species of Nearctic Ctenopelmatinae (Hymenoptera: Ichneumonidae)

    Get PDF
    Three new species of Ctenopelmatinae are described from series obtained from rearings of yellowheaded spruce sawfly larvae, Pikonema alaskensis (Rohwer)

    The large-scale disk fraction of brown dwarfs in the Taurus cloud as measured with Spitzer

    Get PDF
    Aims. The brown dwarf (BD) formation process has not yet been completely understood. To shed more light on the differences and similarities between star and BD formation processes, we study and compare the disk fraction among both kinds of objects over a large angular region in the Taurus cloud. In addition, we examine the spatial distribution of stars and BD relative to the underlying molecular gas Methods. In this paper, we present new and updated photometry data from the Infrared Array Camera (IRAC) aboard the Spitzer Space Telescope on 43 BDs in the Taurus cloud, and recalculate of the BD disk fraction in this region. We also useed recently available CO mm data to study the spatial distribution of stars and BDs relative to the cloud's molecular gas. Results. We find that the disk fraction among BDs in the Taurus cloud is 41 \pm 12%, a value statistically consistent with the one among TTS (58 \pm 9%). We find that BDs in transition from a state where they have a disk to a diskless state are rare, and we study one isolated example of a transitional disk with an inner radius of \approx 0.1 AU (CFHT BD Tau 12, found via its relatively small mid-IR excess compared to most members of Taurus that have disks. We find that BDs are statistically found in regions of similar molecular gas surface density to those associated with stars. Furthermore, we find that the gas column density distribution is almost identical for stellar and substellar objects with and without disks.Comment: 8 page, 6 figures, Accepted in Astronomy & Astrophysics

    An optical spectroscopic H-R diagram for low-mass stars and brown dwarfs in Orion

    Full text link
    The masses and temperatures of young low mass stars and brown dwarfs in star- forming regions are not yet well established because of uncertainties in the age of individual objects and the spectral type vs. temperature scale appropriate for objects with ages of only a few Myr. Using multi-object optical spectroscopy, 45 low-mass stars and brown dwarfs in the Trapezium Cluster in Orion have been classified and 44 of these confirmed as bona fide cluster members. The spectral types obtained have been converted to effective temperatures using a temperature scale intermediate between those of dwarfs and giants, which is suitable for young pre-main sequence objects. The objects have been placed on an H-R diagram overlaid with theoretical isochrones. The low mass stars and the higher mass substellar objects are found to be clustered around the 1 Myr isochrone, while many of the lower mass substellar objects are located well above this isochrone. An average age of 1 Myr is found for the majority of the objects. Assuming coevality of the sources and an average age of 1 Myr, the masses of the objects have been estimated and range from 0.018 to 0.44Msun. The spectra also allow an investigation of the surface gravity of the objects by measurement of the sodium doublet equivalent width. With one possible exception, all objects have low gravities, in line with young ages, and the Na indices for the Trapezium objects lie systematically below those of young stars and brown dwarfs in Chamaeleon, suggesting that the 820 nm Na index may provide a sensitive means of estimating ages in young clusters.Comment: 19 pages, accepted by MNRA

    The Disk Population of the Taurus Star-Forming Region

    Full text link
    We have analyzed nearly all images of the Taurus star-forming region at 3.6-24um that were obtained during the cryogenic mission of the Spitzer Space Telescope (46 deg^2) and have measured photometry for all known members of the region that are within these data, corresponding to 348 sources. We have classified the members of Taurus according to whether they show evidence of disks and envelopes (classes I, II, and III). The disk fraction in Taurus is 75% for solar-mass stars and declines to 45% for low-mass stars and brown dwarfs (0.01-0.3 M_sun). This dependence on stellar mass is similar to that measured for Cha I, although the disk fraction in Taurus is slightly higher overall, probably because of its younger age (1 vs. 2-3 Myr). In comparison, the disk fraction for solar-mass stars is much lower (20%) in IC 348 and Sigma Ori, which are denser than Taurus and Cha I and are roughly coeval with the latter. These data indicate that disk lifetimes for solar-mass stars are longer in regions that have lower stellar densities. Through an analysis of multiple epochs of photometry that are available for ~200 Taurus members, we find that stars with disks exhibit significantly greater mid-IR variability than diskless stars. Finally, we have used our data in Taurus to refine the criteria for primordial, evolved, and transitional disks. The number ratio of evolved and transitional disks to primordial disks in Taurus is 15/98 for K5-M5, indicating a timescale of 0.15 x tau(primordial)=0.45 Myr for the clearing of the inner regions of optically thick disks. After applying the same criteria to older clusters (2-10 Myr), we find that the proportions of evolved and transitional disks in those populations are consistent with the measurements in Taurus when their star formation histories are properly taken into account. ERRATUM: In Table 7, we inadvertently omitted the spectral type bins in which class II sources were placed in Table 8 based on their bolometric luminosities (applies only to stars that lack spectroscopic classifications). The bins were K6-M3.5 for FT Tau, DK Tau B, and IRAS 04370+2559, M3.5-M6 for IRAS 04200+2759, IT Tau B, and ITG 1, and M6-M8 for IRAS 04325+2402 C. In addition, the values of K_s-[3.6] in Table 13 and Figure 26 for spectral types of M4-M9 are incorrect. We present corrected versions of Table 13 and Figure 26.Comment: revised version with Erratum (in press

    Variations in the Mass Functions of Clustered and Isolated Young Stellar Objects

    Full text link
    We analyze high quality, complete stellar catalogs for four young (roughly 1 Myr) and nearby (within ~300 pc) star-forming regions: Taurus, Lupus3, ChaI, and IC348, which have been previously shown to have stellar groups whose properties are similar to those of larger clusters such as the ONC. We find that stars at higher stellar surface densities within a region or belonging to groups tend to have a relative excess of more massive stars, over a wide range of masses. We find statistically significant evidence for this result in Taurus and IC348 as well as the ONC. These differences correspond to having typically a ~10 - 20% higher mean mass in the more clustered environment. Stars in ChaI show no evidence for a trend with either surface density or grouped status, and there are too few stars in Lupus3 to make any definitive interpretation. Models of clustered star formation do not typically extend to sufficiently low masses or small group sizes in order for their predictions to be tested but our results suggest that this regime is important to consider.Comment: Accepted for publication in the Astrophysical Journal. 33 pages including 11 tables and 14 figure

    Spectroscopy of new brown dwarf members of rho Ophiuchi and an updated initial mass function

    Full text link
    To investigate the universality hypothesis of the initial mass function in the substellar regime, the population of the rho Ophiuchi molecular cloud is analysed by including a new sample of low-mass spectroscopically confirmed members. To that end, we have conducted a large spectroscopic follow-up of young substellar candidates uncovered in our previous photometric survey. The spectral types and extinction were derived for a newly found population of substellar objects, and its masses estimated by comparison to evolutionary models. A thoroughly literature search was conducted to provide an up-to-date census of the cluster, which was then used to derive the luminosity and mass functions, as well as the ratio of brown dwarfs to stars in the cluster. These results were then compared to other young clusters. It is shown that the study of the substellar population of the rho Ophiuchi molecular cloud is hampered only by the high extinction in the cluster ruling out an apparent paucity of brown dwarfs. The discovery of 16 new members of rho Ophiuchi, 13 of them in the substellar regime, reveals the low-mass end of its population and shows the success of our photometric candidate selection with the WIRCam survey. The study of the brown dwarf population of the cluster reveals a high disk fraction of 76 (+5-8)%. Taking the characteristic peak mass of the derived mass function and the ratio of brown dwarfs to stars into account, we conclude that the mass function of rho Ophiuchi is similar to other nearby young clusters.Comment: Accepted to A&A (30 December 2011); v2 includes language editin

    17 new very low-mass members in Taurus. The brown dwarf deficit revisited

    Full text link
    Recent studies of the substellar population in the Taurus cloud have revealed a deficit of brown dwarfs (BD) compared to the Trapezium cluster population (Briceno et al 1998; Luhman 2000; Luhman et al 2003a; Luhman 2004). However, these works have concentrated on the highest stellar density regions of the Taurus cloud. We have performed a large scale optical survey of this region, covering a total area of 30 deg^2, and encompassing the densest part of the cloud as well as their surroundings, down to a mass detection limits of 15 Jupiter Masses (MJ). In this paper, we present the optical spectroscopic follow-up observations of 97 photometrically selected potential new low-mass Taurus members, of which 27 are strong late-M (SpT < M4V) candidates. These observations reveal 5 new very low mass (VLM) Taurus members and 12 new BDs. Combining our observations with previously published results, we derive an updated substellar to stellar ratio in Taurus of Rss =0.23 +/- 0.05. This ratio now appears consistent with the value previously derived in the Trapezium cluster under similar assumptions of 0.26 +/- 0.04. We find strong indication that the relative numbers of BDs with respect to stars is decreased by a factor 2 in the central regions of the aggregates with respect to the more distributed population. Our findings are best explained in the context of the embryo-ejection model where brown dwarfs originate from dynamical interactions in small N unstable multiple systems.Comment: 20 pages, 15 figure

    Testing Theoretical Evolutionary Models with AB Dor C and the Initial Mass Function

    Full text link
    We assess the constraints on the evolutionary models of young low-mass objects that are provided by the measurements of the companion AB Dor C by Close and coworkers and by a new comparison of model-derived IMFs of star-forming regions to the well-calibrated IMF of the solar neighborhood. After performing an independent analysis of Close's imaging and spectroscopic data for AB Dor C, we find that AB Dor C is not detected at a significant level (SN 1.2) in the SDI images when one narrow-band image is subtracted from another, but that it does appear in the individual SDI frames as well as the images at JHK. Using the age of 75-150 Myr for AB Dor from Luhman, Stauffer, & Mamajek, the luminosity predicted by the models of Chabrier & Baraffe is consistent with the value that we estimate. We measure a spectral type of M6+/-1 from the K-band spectrum of AB Dor C, which is earlier than the value of M8+/-1 from Close and is consistent with the model predictions when a dwarf temperature scale is adopted. In a test of these models at much younger ages, we show that the low-mass IMFs that they produce for star-forming regions are similar to the IMF of the solar neighborhood. If the masses of the low-mass stars and brown dwarfs in these IMFs of star-forming regions were underestimated by a factor of two as suggested by Close, then the IMF characterizing the current generation of Galactic star formation would have to be radically different from the IMF of the solar neighborhood.Comment: 15 pages, accepted to the Astrophysical Journa

    Optical spectroscopy of X-ray sources in the Taurus molecular cloud: discovery of ten new pre-main sequence stars

    Full text link
    We have analyzed optical spectra of 25 X-ray sources identified as potential new members of the Taurus molecular cloud (TMC), in order to confirm their membership in this SFR. Fifty-seven candidates were previously selected among the X-ray sources in the XEST survey, having a 2MASS counterpart compatible with a PMS star based on color-magnitude and color-color diagrams. We obtained high-resolution optical spectra for 7 of these candidates with the SARG spectrograph at the TNG telescope, which were used to search for Li absorption and to measure the Ha line and the radial and rotational velocities; 18 low-resolution optical spectra obtained with DOLORES for other candidate members were used for spectral classification, for Ha measurements, and to assess membership together with IR color-color and color-magnitude diagrams and additional information from the X-ray data. We found that 3 sources show Li absorption, with equivalent widths of ~500 mA, broad spectral line profiles, indicating v sin i ~20-40 km/s, radial velocities consistent with those for known members, and Ha emission. Two of them are classified as new WTTSs, while the EW (~ -9 Ang) of the Ha line and its broad asymmetric profile clearly indicate that the third star (XEST-26-062) is a CTTS. Fourteen sources observed with DOLORES are M-type stars. Fifteen sources show Ha emission; 6 of them have spectra that indicate surface gravity lower than in MS stars, and their de-reddened positions in IR color-magnitude diagrams are consistent with their derived spectral type and with PMS models at the distance of the TMC. The K-type star XEST-11-078 is confirmed as a new member from the strength of its Ha emission line. Overall, we confirm membership to the TMC for 10 out of 25 X-ray sources observed in the optical. Three sources remain uncertain.Comment: 15 pages, 7 figures, accepted by Astronomy & Astrophysic
    corecore