224 research outputs found

    Novel experimental setup for time-of-flight mass spectrometry ion detection in collisions of anionic species with neutral gas-phase molecular targets

    Get PDF
    8 págs.; 4 figs.; Open Access funded by Creative Commons Atribution Licence 4.0We report a novel experimental setup for studying collision induced products resulting from the interaction of anionic beams with a neutral gas-phase molecular target. The precursor projectile was admitted into vacuum through a commercial pulsed valve, with the anionic beam produced in a hollow cathode discharge-induced plasma, and guided to the interaction region by a set of deflecting plates where it was made to interact with the target beam. Depending on the collision energy regime, negative and positive species can be formed in the collision region and ions were time-of-flight (TOF) mass-analysed. Here, we present data on O2 precursor projectile, where we show clear evidence of O– and O2 – formation from the hollow cathode source as well as preliminary results on the interaction of these anions with nitromethane, CH3NO2. The negative ions formed in such collisions were analysed using time-of-flight mass spectrometry. The five most dominant product anions were assigned to H–, O–, NO–, CNO– and CH3NO2 –.PLV acknowledges the Portuguese Foundation for Science and Technology (FCT-MEC) through SFRH/BSAB/105792/ 2014 during his sabbatical stay at CSIC, Madrid and the research grants PTDC/FIS-ATO/1832/2012 and UID/FIS/00068/ 2013. FFS acknowledges FCT-MEC through researcher grant IF-FCT IF/00380/2014. We also acknowledge the Spanish Ministerio de Economía y Competitividad (Project No. FIS 2012-31230). Some of this work forms part of the EU/ESF COST Actions CM1401 and CM1301, Our Astro-Chemical History and Chemistry for Electron-Induced Nanofabrication, respectively. LE-G and GG acknowledge the FP7-PEOPLE-2013-ITN research grant “Advanced Radiotherapy, Generated by Exploiting Nanoprocesses and Technologies (ARGENT)”.Peer Reviewe

    Intermediate energy cross sections for electron-impact vibrational-excitation of pyrimidine

    Get PDF
    We report differential cross sections (DCSs) and integral cross sections (ICSs) for electron-impact vibrational-excitation of pyrimidine, at incident electron energies in the range 15–50 eV. The scattered electron angular range for the DCS measurements was 15°–90°. The measurements at the DCS-level are the first to be reported for vibrational-excitation in pyrimidine via electron impact, while for the ICS we extend the results from the only previous condensed-phase study [P. L. Levesque, M. Michaud, and L. Sanche, J. Chem. Phys. 122, 094701 (2005)], for electron energies â©œ12 eV, to higher energies. Interestingly, the trend in the magnitude of the lower energy condensed-phase ICSs is much smaller when compared to the corresponding gas phase results. As there is no evidence for the existence of any shape-resonances, in the available pyrimidine total cross sections [Baek et al., Phys. Rev. A 88, 032702 (2013); Fuss et al., ibid. 88, 042702 (2013)], between 10 and 20 eV, this mismatch in absolute magnitude between the condensed-phase and gas-phase ICSs might be indicative for collective-behaviour effects in the condensed-phase results

    The HIV-1 Nef protein binds argonaute-2 and functions as a viral suppressor of RNA interference

    Get PDF
    The HIV-1 accessory protein Nef is an important virulence factor. It associates with cellular membranes and modulates the endocytic machinery and signaling pathways. Nef also increases the proliferation of multivesicular bodies (MVBs), which are sites for virus assembly and budding in macrophages. The RNA interference (RNAi) pathway proteins Ago2 and GW182 localize to MVBs, suggesting these to be sites for assembly and turnover of the miRNA-induced silencing complex (miRISC). While RNAi affects HIV replication, it is not clear if the virus encodes a suppressor activity to overcome this innate host response. Here we show that Nef colocalizes with MVBs and binds Ago2 through two highly conserved Glycine-Tryptophan (GW) motifs, mutations in which abolish Nef binding to Ago2 and reduce virus yield and infectivity. Nef also inhibits the slicing activity of Ago2 and disturbs the sorting of GW182 into exosomes resulting in the suppression of miRNA-induced silencing. Thus, besides its other activities, the HIV-1 Nef protein is also proposed to function as a viral suppressor of RNAi (VSR)

    The <i>Castalia</i> mission to Main Belt Comet 133P/Elst-Pizarro

    Get PDF
    We describe Castalia, a proposed mission to rendezvous with a Main Belt Comet (MBC), 133P/Elst-Pizarro. MBCs are a recently discovered population of apparently icy bodies within the main asteroid belt between Mars and Jupiter, which may represent the remnants of the population which supplied the early Earth with water. Castalia will perform the first exploration of this population by characterising 133P in detail, solving the puzzle of the MBC’s activity, and making the first in situ measurements of water in the asteroid belt. In many ways a successor to ESA’s highly successful Rosetta mission, Castalia will allow direct comparison between very different classes of comet, including measuring critical isotope ratios, plasma and dust properties. It will also feature the first radar system to visit a minor body, mapping the ice in the interior. Castalia was proposed, in slightly different versions, to the ESA M4 and M5 calls within the Cosmic Vision programme. We describe the science motivation for the mission, the measurements required to achieve the scientific goals, and the proposed instrument payload and spacecraft to achieve these

    CASTAway : An asteroid main belt tour and survey

    Get PDF
    CASTAway is a mission concept to explore our Solar System's main asteroid belt. Asteroids and comets provide a window into the formation and evolution of our Solar System and the composition of these objects can be inferred from space-based remote sensing using spectroscopic techniques. Variations in composition across the asteroid populations provide a tracer for the dynamical evolution of the Solar System. The mission combines a long-range (point source) telescopic survey of over 10,000 objects, targeted close encounters with 10-20 asteroids and serendipitous searches to constrain the distribution of smaller (e.g. 10 m) size objects into a single concept. With a carefully targeted trajectory that loops through the asteroid belt, CASTAway would provide a comprehensive survey of the main belt at multiple scales. The scientific payload comprises a 50 cm diameter telescope that includes an integrated low-resolution (R = 30-100) spectrometer and visible context imager, a thermal (e.g. 6-16 mu m) imager for use during the flybys, and modified star tracker cameras to detect small (similar to 10 m) asteroids. The CASTAway spacecraft and payload have high levels of technology readiness and are designed to fit within the programmatic and cost caps for a European Space Agency medium class mission, while delivering a significant increase in knowledge of our Solar System. (C) 2017 COSPAR. Published by Elsevier Ltd. All rights reserved.Peer reviewe

    Selective autophagy degrades DICER and AGO2 and regulates miRNA activity.

    Get PDF
    MicroRNAs (miRNAs) form a class of short RNAs (∌ 21 nucleotides) that post-transcriptionally regulate partially complementary messenger RNAs. Each miRNA may target tens to hundreds of transcripts to control key biological processes. Although the biochemical reactions underpinning miRNA biogenesis and activity are relatively well defined and the importance of their homeostasis is increasingly evident, the processes underlying regulation of the miRNA pathway in vivo are still largely elusive. Autophagy, a degradative process in which cytoplasmic material is targeted into double-membrane vacuoles, is recognized to critically contribute to cellular homeostasis. Here, we show that the miRNA-processing enzyme, DICER (also known as DICER1), and the main miRNA effector, AGO2 (also known as eukaryotic translation initiation factor 2C, 2 (EIF2C2)), are targeted for degradation as miRNA-free entities by the selective autophagy receptor NDP52 (also known as calcium binding and coiled-coil domain 2 (CALCOCO2)). Autophagy establishes a checkpoint required for continued loading of miRNA into AGO2; accordingly, NDP52 and autophagy are required for homeostasis and activity of the tested miRNAs. Autophagy also engages post-transcriptional regulation of the DICER mRNA, underscoring the importance of fine-tuned regulation of the miRNA pathway. These findings have implications for human diseases linked to misregulated autophagy, DICER- and miRNA-levels, including cancer

    Screening and identification of seed-specific genes using digital differential display tools combined with microarray data from common wheat

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Wheat is one of the most important cereal crops for human beings, with seeds being the tissue of highly economic value. Various morphogenetic and metabolic processes are exclusively associated with seed maturation. The goal of this study was to screen and identify genes specifically expressed in the developing seed of wheat with an integrative utilization of digital differential display (DDD) and available online microarray databases.</p> <p>Results</p> <p>A total of 201 unigenes were identified as the results of DDD screening and microarray database searching. The expressions of 6 of these were shown to be seed-specific by qRT-PCR analysis. Further GO enrichment analysis indicated that seed-specific genes were mainly associated with defense response, response to stress, multi-organism process, pathogenesis, extracellular region, nutrient reservoir activity, enzyme inhibitor activity, antioxidant activity and oxidoreductase activity. A comparison of this set of genes with the rice (<it>Oryza sativa</it>) genome was also performed and approximately three-fifths of them have rice counterparts. Between the counterparts, around 63% showed similar expression patterns according to the microarray data.</p> <p>Conclusions</p> <p>In conclusion, the DDD screening combined with microarray data analysis is an effective strategy for the identification of seed-specific expressed genes in wheat. These seed-specific genes screened during this study will provide valuable information for further studies about the functions of these genes in wheat.</p

    Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling

    Get PDF
    Despite substantial efforts to understand the interactions between nanoparticles and cells, the cellular processes that determine the efficiency of intracellular drug delivery remain largely unclear. Here we examined cellular uptake of siRNA delivered in lipid nanoparticles (LNPs) using cellular trafficking probes in combination with automated high-throughput confocal microscopy as well as defined perturbations of cellular pathways paired with systems biology approaches to uncover protein-protein and protein-small molecule interactions. We show that multiple cell signaling effectors are required for initial cellular entry of LNPs through macropinocytosis, including proton pumps, mTOR, and cathepsins. SiRNA delivery is substantially reduced as ≅70% of the internalized siRNA undergoes exocytosis through egress of LNPs from late endosomes/lysosomes. Niemann Pick type C1 (NPC1) is shown to be an important regulator of the major recycling pathways of LNP-delivered siRNAs. NPC1-deficient cells show enhanced cellular retention of LNPs inside late endosomes/lysosomes and increased gene silencing of the target gene. Our data suggests that siRNA delivery efficiency might be improved by designing delivery vehicles that can escape the recycling pathways
    • 

    corecore