145 research outputs found

    Neurobiological Mechanisms That Contribute to Stress-related Cocaine Use

    Get PDF
    The ability of stressful life events to trigger drug use is particularly problematic for the management of cocaine addiction due to the unpredictable and often uncontrollable nature of stress. For this reason, understanding the neurobiological processes that contribute to stress-related drug use is important for the development of new and more effective treatment strategies aimed at minimizing the role of stress in the addiction cycle. In this review we discuss the neurocircuitry that has been implicated in stress-induced drug use with an emphasis on corticotropin releasing factor actions in the ventral tegmental area (VTA) and an important pathway from the bed nucleus of the stria terminalis to the VTA that is regulated by norepinephrine via actions at beta adrenergic receptors. In addition to the neurobiological mechanisms that underlie stress-induced cocaine seeking, we review findings suggesting that the ability of stressful stimuli to trigger cocaine use emerges and intensifies in an intake-dependent manner with repeated cocaine self-administration. Further, we discuss evidence that the drug-induced neuroadaptations that are necessary for heightened susceptibility to stress-induced drug use are reliant on elevated levels of glucocorticoid hormones at the time of cocaine use. Finally, the potential ability of stress to function as a “stage setter” for drug use – increasing sensitivity to cocaine and drug-associated cues – under conditions where it does not directly trigger cocaine seeking is discussed. As our understanding of the mechanisms through which stress promotes drug use advances, the hope is that so too will the available tools for effectively managing addiction, particularly in cocaine addicts whose drug use is stress-driven

    Contribution of limbic norepinephrine to cannabinoid-induced aversion

    Get PDF
    RATIONALE: The cannabinoid system has risen to the forefront in the development of novel treatments for a number of pathophysiological processes. However, significant side effects have been observed in clinical trials raising concerns regarding the potential clinical utility of cannabinoid-based agents. Understanding the neural circuits and neurochemical substrates impacted by cannabinoids will provide a better means of gaging their actions within the central nervous system that may contribute to the expression of unwanted side effects. OBJECTIVES: In the present study, we investigated whether norepinephrine (NE) in the limbic forebrain is a critical determinant of cannabinoid receptor agonist-induced aversion and anxiety in rats. METHODS: An immunotoxin lesion approach was combined with behavioral analysis using a place conditioning paradigm and the elevated zero maze. RESULTS: Our results show that the non-selective CB1/CB2 receptor agonist, WIN 55,212-2, produced a significant place aversion in rats. Further, NE in the nucleus accumbens was critical for WIN 55,212-2-induced aversion but did not affect anxiety-like behaviors. Depletion of NE from the bed nucleus of the stria terminalis was ineffective in altering WIN 55,212-2-induced aversion and anxiety. CONCLUSIONS: These results indicate that limbic, specifically accumbal, NE is required for cannabinoid-induced aversion but is not essential to cannabinoid-induced anxiety.This works was supported by PHS grant DA 020129. Ana Franky Carvalho was supported by the Portuguese Foundation for Science and Technology (SFRH/BD/33236/2007)

    Placental microRNA methylome signatures may serve as biomarkers and therapeutic targets for prenatally opioid-exposed infants with neonatal opioid withdrawal syndrome

    Get PDF
    Introduction: The neonate exposed to opioids in utero faces a constellation of withdrawal symptoms postpartum commonly called neonatal opioid withdrawal syndrome (NOWS). The incidence of NOWS has increased in recent years due to the opioid epidemic. MicroRNAs (miRNAs) are small non-coding RNA molecules that play a crucial role in gene regulation. Epigenetic variations in microRNAs (miRNAs) and their impact on addiction-related processes is a rapidly evolving area of research.Methods: The Illumina Infinium Methylation EPIC BeadChip was used to analyze DNA methylation levels of miRNA-encoding genes in 96 human placental tissues to identify miRNA gene methylation profiles as-sociated with NOWS: 32 from mothers whose prenatally opioid-exposed infants required pharmacologic management for NOWS, 32 from mothers whose prenatally opioid-exposed infants did not require treat-ment for NOWS, and 32 unexposed controls.Results: The study identified 46 significantly differentially methylated (FDR p-value ≤ 0.05) CpGs associated with 47 unique miRNAs, with a receiver operating characteristic (ROC) area under the curve (AUC) ≥0.75 including 28 hypomethylated and 18 hypermethylated CpGs as potentially associated with NOWS. These dysregulated microRNA methylation patterns may be a contributing factor to NOWS pathogenesis.Conclusion: This is the first study to analyze miRNA methylation profiles in NOWS infants and illustrates the unique role miRNAs might have in diagnosing and treating the disease. Furthermore, these data may provide a step toward feasible precision medicine for NOWS babies as well

    Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study

    Get PDF
    A41 Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study In: Addiction Science & Clinical Practice 2017, 12(Suppl 1): A4

    Expression and function of G-protein-coupled receptorsin the male reproductive tract

    Get PDF
    This review focuses on the expression and function of muscarinic acetylcholine receptors (mAChRs), α1-adrenoceptors and relaxin receptors in the male reproductive tract. The localization and differential expression of mAChR and α1-adrenoceptor subtypes in specific compartments of the efferent ductules, epididymis, vas deferens, seminal vesicle and prostate of various species indicate a role for these receptors in the modulation of luminal fluid composition and smooth muscle contraction, including effects on male fertility. Furthermore, the activation of mAChRs induces transactivation of the epidermal growth factor receptor (EGFR) and the Sertoli cell proliferation. The relaxin receptors are present in the testis, RXFP1 in elongated spermatids and Sertoli cells from rat, and RXFP2 in Leydig and germ cells from rat and human, suggesting a role for these receptors in the spermatogenic process. The localization of both receptors in the apical portion of epithelial cells and smooth muscle layers of the vas deferens suggests an involvement of these receptors in the contraction and regulation of secretion.Esta revisão enfatiza a expressão e a função dos receptores muscarínicos, adrenoceptores α1 e receptores para relaxina no sistema reprodutor masculino. A expressão dos receptores muscarínicos e adrenoceptores α1 em compartimentos específicos de dúctulos eferentes, epidídimo, ductos deferentes, vesícula seminal e próstata de várias espécies indica o envolvimento destes receptores na modulação da composição do fluido luminal e na contração do músculo liso, incluindo efeitos na fertilidade masculina. Além disso, a ativação dos receptores muscarínicos leva à transativação do receptor para o fator crescimento epidermal e proliferação das células de Sertoli. Os receptores para relaxina estão presentes no testículo, RXFP1 nas espermátides alongadas e células de Sertoli de rato e RXFP2 nas células de Leydig e germinativas de ratos e humano, sugerindo o envolvimento destes receptores no processo espermatogênico. A localização de ambos os receptores na porção apical das células epiteliais e no músculo liso dos ductos deferentes de rato sugere um papel na contração e na regulação da secreção.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Departamento de FarmacologiaUNIFESP, EPM, Depto. de FarmacologiaSciEL

    Expression and function of G-protein-coupled receptorsin the male reproductive tract

    Full text link

    Learning from Poverty: Why Business Schools Should Address Poverty, and How They Can Go About It.

    Get PDF
    In the past few years, business schools have begun to address poverty issues in their teaching, learning and curricula. While this is a positive development, the arguments for reconfiguring educational programs to address such matters remain undeveloped, with much of the impetus for such endeavors rooted in calls for social responsibility in the United Nations Millennium Development Goals, the Social Compact, the Principles for Responsible Management Education and benchmarks such as ISO 26000. This article seeks to clarify the pedagogical grounds for integrating poverty issues in management education by examining the intellectual and personal development benefits of doing so. By critically examining four modes of business involvement in poverty reduction, the article shows how such initiatives can be used as intellectual lenses through which to view the complex and often paradoxical interconnections between socioeconomic and environmental systems. It is thus concluded that a consideration of poverty issues is not a marginal matter, but is key to grasping the 21st century complexities of global business and management
    corecore