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ABSTRACT

This review focuses on the expression and function of muscarinic acetylcholine receptors (mAChRs), α1-adrenoceptors

and relaxin receptors in the male reproductive tract. The localization and differential expression of mAChR and α1-

adrenoceptor subtypes in specific compartments of the efferent ductules, epididymis, vas deferens, seminal vesicle and

prostate of various species indicate a role for these receptors in the modulation of luminal fluid composition and smooth

muscle contraction, including effects on male fertility. Furthermore, the activation of mAChRs induces transactivation

of the epidermal growth factor receptor (EGFR) and the Sertoli cell proliferation. The relaxin receptors are present in

the testis, RXFP1 in elongated spermatids and Sertoli cells from rat, and RXFP2 in Leydig and germ cells from rat

and human, suggesting a role for these receptors in the spermatogenic process. The localization of both receptors in

the apical portion of epithelial cells and smooth muscle layers of the vas deferens suggests an involvement of these

receptors in the contraction and regulation of secretion.
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INTRODUCTION

G-protein-coupled receptors (GPCRs) play different

roles in autocrine and neuronal systems and are impor-

tant in the physiology and pathophysiology of various

organs. The activation of these receptors may affect

cell proliferation, differentiation, growth and other func-

tions in the male reproductive tract organs. This review

focuses on the expression and function of muscarinic

acetylcholine receptors (mAChRs), α1-adrenoceptors

and relaxin receptors in the male reproductive tract.

Firstly, the differential expression of mAChR subtypes

(M1, M2, M3, M4 and M5) in Sertoli cells, efferent duc-

tules, epididymis, seminal vesicle and their pharmaco-
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logical characteristics, intracellular signaling and possi-

ble interaction with growth factors are presented. Sec-

ondly, aspects of the genomic organization, structure, tis-

sue distribution in the male reproductive tract and phar-

macological characteristics and function of the different

α1-adrenoceptors subtypes (α1A-, α1B- and α1D-adreno-

ceptors) are reviewed. Lastly, the function and distri-

bution in the male reproductive organs of the recently

discovered relaxin receptors are discussed.

MUSCARINIC ACETYLCHOLINE RECEPTORS:
SUBTYPES, EXPRESSION AND CELLULAR SIGNALlNG
MECHANISMS IN THE MALE REPRODUCTIVE TRACT

The cellular actions of acetylcholine (ACh) are medi-

ated by two structurally different families of membrane-

bound proteins: the nicotinic receptors and muscarinic

acetylcholine receptors (mAChRs) (for review see Hul-
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me et al. 1990, Caulfield and Birdsall 1998, Wess 2004,

Eglen 2006). mAChRs are class I heptahelical G-pro-

tein-coupled receptors (GPCRs) and comprise five dis-

tinct subtypes (M1 to M5) encoded by different intron-

less genes (Kubo et al. 1986). The similarity in ligand-

binding sites across the five subtypes explains why the

development of subtype-selective ligands has been diffi-

cult (Hulme et al. 1990). In addition to agonist-binding

sites, mAChRs possess allosteric sites that bind modu-

lators of receptor activation. These allosteric sites dif-

fer from the agonist-binding site, and they are receptor-

subtype specific, a characteristic especially favorable

for the design of subtype-selective modulators (Bird-

sall and Lazareno 2005).

The coupling of mAChRs to their cellular effector

systems is mediated via heterotrimeric guanine nucleo-

tide-binding proteins (G-proteins) (for review see Lan-

zafame et al. 2003). M1, M3 and M5 mAChRs prefer-

entially couple with Gq/11, mobilize phosphoinositides

to generate inositol 1,4,5-triphosphate (IP3) and 1,2-dia-

cylglycerol (DAG) via activation of phosphoinositide-

specific phospholipase Cβ (PLCβ), leading to an in-

crease in intracellular Ca2+ and protein kinase C (PKC)

activity. M2 and M4 mAChRs preferentially couple with

Gi/o and inhibit elevated adenylylcyclase activity. M2

mAChRs, via Gβγ , can also activate PLCβ. Further-

more, mAChRs have also been shown to regulate other

signaling pathways. Hence, both Gαq/11- and Gαi/o-

coupled with mAChRs may exert effects through activa-

tion of small GTPases, such as Rho and Ras, and down-

stream effectors, such as phosphoinositide-3 kinases (PI3

kinases), non-receptor tyrosine kinases, and mitogen-

activated protein kinases (MAP kinases) (for review see

Lanzafame et al. 2003, van Koppen and Kaiser 2003).

The latter signaling pathway seems to play a major role

in the autocrine functions of mAChRs in terms of the

control of cell growth or proliferation, secretion by epi-

thelial cells, and apoptosis (for review see Eglen 2006).

The importance of mAChRs for fertility has been

revealed by the demonstration that mAChR antagonists

impair fertility in male rats (Ban et al. 2002, Sato et

al. 2005), but the underlying mechanisms that cause

this infertility remain unclear. The study of the expres-

sion, localization and function of mAChR subtypes in

the male reproductive tract is essential to understand the

role of the cholinergic nervous system in male fertility.

In an attempt to clarify the pathophysiology of

idiopathic male infertility and to develop new methods

for male contraception, researchers have focused on lo-

cal regulators of intratesticular events (Huleihel and

Lunenfeld 2004, Walker and Cheng 2005, Yan et al.

2007) and Sertoli cells play an important role in this

process (Skinner 2005). Studies from our laboratory

have shown the presence of M1 to M5 mAChRs (mRNA

and protein) in primary culture of Sertoli cells from 15-

day and 30-day old rats (Borges et al. 2001, Lucas et al.

2008). mAChRs have been localized in plasma mem-

brane, cytoplasmic organelles, perinuclear region and

nuclei in cultured Sertoli cells from 15-day old rats by

using immunofluorescence studies and confocal laser

scanning microscopy. M1, M3 and M5 mAChR subtypes

are mainly localized in the cell nuclei, with a weak to

moderate staining visible in the plasma membrane and

perinuclear region of Sertoli cells. On the other hand,

M2 and M4 mAChR subtypes are predominantly local-

ized in the plasma membrane, with some staining in the

perinuclear region (Lucas et al. 2008). Although the

functional significance of mAChRs in the plasma mem-

brane is well established, their presence in subcellular

regions has been observed in several cell types (Bernard

et al. 1999, 2003, Salamanca et al. 2005). The num-

ber of receptors at the plasma membrane is frequently

regulated to modulate cell responses upon stimulation.

Therefore, the intracellular pool of mAChRs may rep-

resent both newly synthesized and recycled stores of

receptors in amounts that vary with the balance between

the rate of synthesis and the shedding and desensitiza-

tion processes. The neurochemical environment may

contribute to the control of the abundance and availabil-

ity of cell surface receptors and, consequently, to the

control of neuronal sensitivity to neurotransmitters or

mAChR agonists, by regulating their delivery from the

endoplasmic reticulum and Golgi complex (Bernard et

al. 1999, 2003).

The presence of mAChRs gives support to the idea

that the cholinergic neurotransmission may have a phys-

iological role in Sertoli cells. In fact, mAChR ago-

nist inhibits FSH-induced cyclic AMP accumulation in
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cultured Sertoli cells from immature hamster (Daven-

port and Heindel 1987) and induces phosphoinositide

hydrolysis and time-dependent stimulation of the acti-

vator protein-1 DNA-binding activity in cultured Sertoli

cells from 30-day old rats (Borges et al. 2001). The

activation of mAChRs also rapidly stimulates [methyl-
3H]thymidine incorporation in cultured Sertoli cells ob-

tained from 8-day and 15-day old rats, in a concentration-

dependent and time-dependent manner, suggesting an

induction of DNA synthesis and/or DNA repair (Lucas

et al. 2004). Furthermore, the activation of mAChRs

induces transactivation of the epidermal growth factor

receptor (EGFR) through βγ -subunits of G proteins

that promote Src-mediated metalloprotease-dependent

cleavage and release of EGFR ligands from the cell sur-

face and binding to EGFR and activation of extracellular

signal-regulated kinases (Erk)1/2 in Sertoli cells from

15-day old rats. PLCβ and intracellular Ca2+ mobiliza-

tion, but not PKC, are involved in the Erk1/2 phospho-

rylation induced by mAChRs in Sertoli cells (Lucas et

al. 2008). The transactivation of EGFR by the agonist-

mAChR complex is also involved in the Sertoli cell pro-

liferation (Lucas et al. 2008). The characterization of

the signaling pathways regulated by the agonist-mAChR

complex in Sertoli cells is an important step to under-

stand how this complex may support spermatogenesis.

It is important that future studies focus on components

of the MAP kinase pathway, such as transcription fac-

tors, regulatory kinases and phosphatases, and the in-

volvement of other signaling pathways that could be

mediated by mAChRs, such as activation of PI3 kinase

and phospholipase A2 (PLA2), as they may represent

additional mechanisms for the regulation of protein se-

cretion and cell junction dynamics in the testis.

In the rat epididymis, studies from our laboratory

have shown the presence of mRNA for M1, M2 and M3

mAChRs in the caput and cauda region (Maróstica et al.

2001, 2005). The levels of mRNA for M2 subtype are

higher in the cauda than in the caput of the epididymis.

Low levels of M1 mRNA are present in the caput and

cauda of the epididymis, and low levels of M3 mRNA

are found in the caput region (Maróstica et al. 2005).

mRNA for M1, M2 and M3 mAChRs is also present in

efferent ductules (Siu et al. 2006).

Immunolocalization of mAChR subtypes in rat ef-

ferent ductules and epididymis has indicated a variable

degree of immunostaining for each mAChR subtype in

a cell-type and tissue-specific pattern (Siu et al. 2006).

M1 mAChR is detected in the epithelium of the effer-

ent ductules, while M2 and M3 mAChRs are observed in

the apical region of the ciliated cells of the efferent duc-

tules. Apical and narrow cells of the initial segment

of the epididymis show a distinct staining for M1 sub-

type, whereas supranuclear localization is noted in prin-

cipal cells of the caput of the epididymis. In addition,

staining for M1 and M2 mAChRs is visible in the apical

membrane of some epithelial cells of the cauda of the

epididymis (Siu et al. 2006). These findings suggest a

relationship between mAChRs activation and secretory

processes. In fact, the activation of mAChRs stimulates

chloride secretion in cultured rat epididymal epithelium

(Du et al. 2006), and increases [35S]-Methionine in-

corporation in proteins secreted by rat efferent ductules

and in secreted and tissular proteins of the caput of the

epididymis. These effects were abolished by atropine,

a nonselective mAChR antagonist (E.R. Siu et al., un-

published data). Immunoreactivity for M3 mAChR is

detected in the peritubular smooth muscle of the effer-

ent ductules and along the different epididymal regions,

with a strong reaction in the proximal and distal cauda,

suggesting that this receptor subtype may play a role in

smooth muscle contraction (Siu et al. 2006). Indeed,

hexahydro-sila-difenidol (HHSiD), a M3/M1 selective

mAChR antagonist, is able to abolish contractions in-

duced by carbachol, a stable analog of ACh, indicating

the involvement of M3 mAChRs in the epididymal tubule

contraction (Siu et al. 2006). Cell-specific expression of

the mAChR subtypes in the efferent ductules and epi-

didymis suggests the role of these receptors in the modu-

lation of smooth muscle contraction and the composition

of the luminal fluid, which is essential for post-testicular

maturation of spermatozoa.

In the dog vas deferens, binding studies have shown

the presence of mAChRs. The prostatic region expresses

a greater amount of mAChRs than the intermediate or

epididymal regions (Kondo et al. 1994). mAChRs have

been also described in the human vas deferens (Miranda

et al. 1992). In the guinea-pig vas deferens, M3 mAChR
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potentiates P2X receptor-mediated contractions, but not

adrenoceptor-mediated contractions (Iram and Hoyle

2005). In rabbit vas deferens, prejunctional M1 mAChRs

inhibit the release of endogenous noradrenaline (Grimm

et al. 1994) and the contractile response of vas deferens

(Shannon et al. 1993). The presence of mRNA or pro-

tein for M1, M2 and M3 mAChRs has also been shown

in rat vas deferens (Miranda et al. 1994, 1995), and M1

and M2 mAChRs are involved in the contraction of the

epididymal region of rat vas deferens (Doggrell 1986).

The cell- and region-specific expression of mAChR sub-

types in vas deferens and the role of each subtype in

different species remain to be explored.

The presence of mRNA for the five mAChRs has

been shown in the rat seminal vesicle (Hamamura et al.

2006). M3 mAChR is predominantly involved in the

contraction of the seminal vesicle in guinea-pigs (Eglen

et al. 1992) and rats (Hamamura et al. 2006). Immuno-

histochemical studies revealed the presence of M2 and

M3 mAChRs in the smooth muscle layers of the rat

seminal vesicle (Hamamura et al. 2006). M2 and M3

mAChRs may also be involved in protein secretion since

they are present in epithelial cells of the rat seminal vesi-

cle (Hamamura et al. 2006). Other evidence that sup-

ports this suggestion is that mAChR agonists stimulate

protein secretion in cultured epithelial cells of the rat

seminal vesicle (Kinghorn et al. 1987), alkaline phos-

phatase secretion and phospholipid synthesis in the

guinea-pig seminal vesicle (Lockwood and Williams-

Ashman 1971), and fructose release from epithelial cells

of guinea-pig seminal vesicle via nitric oxide produc-

tion (Ehrén et al. 1997). Apart from the effects on pro-

tein secretion, mAChRs are also involved in mitogenic

effects in cultured epithelial cells from the rat seminal

vesicle (Kinghorn et al. 1987). Recent studies from our

laboratory have shown that the mechanism by which

agonist-mAChR acts in seminal vesicle involves the

transactivation of the EGFR through Gβγ -subunits pro-

teins that promote Src-mediated metalloprotease-de-

pendent cleavage and release of EGFR ligands from the

cell surface and binding to EGFR and Erk1/2 activation.

Furthermore, PLC, intracellular Ca2+ mobilization and

PKC are also involved in the Erk1/2 phosphorylation

induced by the activation of mAChRs (M. Hamamura

et al., unpublished data). Further studies are necessary

to understand the role of the agonist-mAChR-Erk1/2 in

the proliferation, differentiation and secretion in the sem-

inal vesicle and, consequently, the impact of the cholin-

ergic nervous system to male fertility.

The presence of M2 mAChR in the rat prostate

has been shown by immunoprecipitation studies (Rug-

gieri et al. 1995). On the other hand, binding studies

with selective antagonists suggested the presence of M3

mAChRs (Lau and Pennefather 1998), and immunostain-

ing confirmed the presence of M3 mAChR in the outer

muscle layer surrounding the prostatic acini (Nadelhaft

2003). In fact, mAChR agonist-induced contractions of

the ventral lobe of the rat prostate seem to be mediated

by M3 mAChR (Lau and Pennefather 1998, Ventura et

al. 2002). The expression of mAChR subtypes varies

among the different lobes of the rat prostate; immuno-

histochemistry combined with RT-PCR analysis suggests

that M3 mAChRs are predominantly expressed in the

ventral lobe and M2 mAChRs in the dorsolateral lobe

(Pontari et al. 1998). The activation of mAChRs in rat

prostate gland induces glandular secretion (Wang et al.

1991) and increases Ca2+ with concomitant activation of

K+ and Cl– channels, which are essential for fluid secre-

tion (Kim et al. 2005).

M2 mAChR mRNA (Obara et al. 2000) and pro-

tein (Yazawa et al. 1994) are detected in cultured pro-

state smooth muscle cells from human patients with be-

nign prostatic hypertrophy. Additionally, M1 mAChRs

are present on glandular epithelial cells from these

patients (Ruggieri et al. 1995) and M3 mAChR is pres-

ent in the LNCaP prostatic cancer cell line (Rayford et

al. 1997). Other studies in prostate cell lines have re-

vealed controversial findings. LNCaP cells, as well as

DU145 cells, express approximately equal amounts of

M1 and M3 mAChRs, whereas PC3 cells express only

M3 mAChRs (Luthin et al. 1997), and mAChR agonist

increases phosphatidylinositol turnover in PC3, but not

in DU145 or LNCaP cell lines.

A high expression of M3 mAChRs has been cor-

related with differentiation of the human prostatic ep-

ithelium (Blanco and Robinson 2004). Normal prostate

cell lines fail to proliferate or increase Erk activity upon

mAChR agonist stimulation, although an increase is ob-
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served in Jun N-terminal kinase activity (Ruggieri et al.

1995, Luthin et al. 1997). On the other hand, mAChR

agonist induces growth of prostate epithelial cells and

an increase in Erk activity in several prostate cancer cell

lines (Rayford et al. 1997, Luthin et al. 1997), while

in PC3 prostate carcinoma cells, mAChR activation in-

duces transactivation of EGFR (Prenzel et al. 1999).

Moreover, several studies suggest a direct or indirect role

for the Erk1/2 signaling pathway in the development of

prostate cancer (Papatsoris et al. 2007), but reports of

Erk1/2 activation in prostate cancer have been contro-

versial. Further characterization is necessary to under-

stand the role of the agonist-mAChR complex and the

intracellular signaling pathways involved in secretion,

proliferation and differentiation in the prostate.

Multiple factors may be involved in the regulation

of mAChRs. Briefly, studies have pointed out the impor-

tance of a physiological balance between androgen and

testicular factors in the regulation of mAChRs in the rat

epididymis (Maróstica et al. 2005). Moreover, androgen

also modulates mAChRs present in the rat vas deferens

(Longhurst and Brotcke 1989) and prostate (Shapiro et

al. 1985).

α1-ADRENOCEPTORS: SUBTYPES AND EXPRESSION
IN THE MALE REPRODUCTIVE TRACT

The natural adrenergic amines, adrenaline and nora-

drenaline, are among the most important regulators of

physiological functions and biochemical processes in

the organism, through their release by adrenal medulla

and related chromaffin structures and the sympathetic

nervous system (for review see Docherty 2002, Jackson

and Cunnane 2001, Eisenhofer 2001). With adrener-

gic nerve stimulation, noradrenaline is released from the

nerve terminal. The action of this neurotransmitter can

be mediated on the target cell by three subfamilies of G-

protein-coupled receptors (α1, α2 and β-adrenoceptors),

each of them comprising different receptor subtypes

which are products of separate genes: α1 (α1A-, α1B-

and α1D-adrenoceptors); α2 (α2A-, α2B- and α2C-adreno-

ceptors) and β (β1-, β2- and β3-adrenoceptors). They

play important roles in the regulation of diverse physi-

ological systems throughout the body and are involved

in the treatment and control of a variety of cardiovascu-

lar, respiratory, urogenital and mental disorders (for re-

views see Langer 1999, Ruffolo and Hieble 1999, Zhong

and Minneman 1999, Brodde and Leineweber 2004). In

this review, aspects of the genomic organization, struc-

ture, tissue distribution in the male reproductive tract

and function of α1-adrenoceptors are presented.

α1-adrenoceptor subtypes (α1A-, α1B- and α1D-

adrenoceptor) are encoded by three separate genes (de-

noted ADRA1A, ADRA1B and ADRA1D) as single-chain

protein products (Morrow and Creese 1986, Schwinn et

al. 1990, Ramarao et al. 1992, Yang-Feng et al. 1990,

1994, Hieble et al. 1995, Piascik et al. 1995, Docherty

1998). All α1-adrenoceptor subtypes contain:

1) a common overall structure with seven hydropho-

bic transmembrane (TM1-TM7) helices intercon-

nected by hydrophilic sections composed of three

intracellular and three extracellular loops;

2) an extracellular N-termini which contains consen-

sus sites for N-linked glycosylation (Sawutz et al.

1987);

3) an intracellular C-termini which contains consen-

sus sites for phosphorylation by protein kinases

(Leeb-Lundberg et al. 1985, Lefkowitz 1998, Lef-

kowitz et al. 1998, Vázquez-Prado et al. 2000)

and interaction with regulatory proteins (Hirasawa

et al. 2001, Pupo and Minneman 2003, Diviani et

al. 2003); and

4) second and third intracellular loops that are

involved in the coupling with heterotrimeric G pro-

teins (Hieble et al. 1995, Lefkowitz and Caron

1988, Graham et al. 1996).

Functional studies and computational molecular mod-

eling also indicate amino acids located mainly on trans-

membrane domains TM3, TM5 and TM6 with important

role in the binding of the endogenous catecholamines to

α1-adrenoceptors (Piascik and Perez 2001, Porter et al.

1996, Hwa and Perez 1996, Chen et al. 1999, Waugh et

al. 2000, Hwa et al. 1995, 1996, Pedretti et al. 2004).

All three α1-adrenoceptor genes present a genomic

structure of at least two exons separated by a large

intron ranging from 7.2–93 kbp in different species

(Yasuoka et al. 1996, Perez et al. 1994, Ramarao et al.

1992). The first exon contains the nucleotide sequence

codeing for the N-terminus through the transmembrane
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domain TM6 of the receptor, while the second exon en-

codes the third extracellular loop, transmembrane do-

main TM7 and all (or most) of the C-terminal region

(Ramarao et al. 1992, Esbenshade et al. 1995). Addi-

tional exons are known to be present in the ADRA1A

gene in human (Hirasawa et al. 1995, Chang et al. 1998,

Cogé et al. 1999, Patrão et al. 2008), rabbit (Suzuki et

al. 2000), guinea-pig (González-Espinosa et al. 2001)

and rhesus monkey (Patrão et al. 2008), whose alter-

native use leads to several transcript variants by splic-

ing mechanisms. In humans, at least eleven different

ADRA1A splice variants have been reported (Hawryly-

shyn et al. 2004). A summary of the nomenclature of

the genes, transcripts and their corresponding isoforms

for all these splicing variants can be found in Patrão et

al. (2008). Four of these variants, differing in length

and sequence of the C-terminal region, are functional

proteins with pharmacological profile and ability to me-

diate effects induced by norepinephrine similar to the

classical α1A-adrenoceptor (wild type, ADRA1A_i1)

(Hirasawa et al. 1995, Chang et al. 1998, Cogé et al.

1999, Hawrylyshyn et al. 2004). They present, how-

ever, differences in G-protein coupling specificity and

down-regulation mechanisms are suggested among

these splice variants (Hirasawa et al. 1995, Chang et

al. 1998, Price et al. 2002). The other seven human

splice variants, differing in length and sequence in the

C-terminal region, code for non-functional truncated

isoforms that lack TM7 and, for this reason, are inca-

pable of ligand binding and activating signal transduc-

tion (Chang et al. 1998, Cogé et al. 1999, Hawrylyshyn

et al. 2004). Differences in the relative abundance, cel-

lular localization and possible functions for these

ADRA1A gene splice variants have been suggested

(Hirasawa et al. 1995, Cogé et al. 1999, Schwinn and

Kwatra 1998, Ramsay et al. 2004, Patrão et al. 2008).

Functional and truncated ADRA1A splice variants are

differentially expressed in different tissues of the male

reproductive tract of humans and rhesus monkeys

(testis, epididymis, prostate and seminal vesicle), rais-

ing the question about their relevance in physiological

and pathological events in these tissues (Patrão et al.

2008). No ADRA1A splice variants have been detected

in rodents, and the physiological significance of these

splices variants in humans and other species, however,

remains to be determined.

All three α1-adrenoceptor subtypes show similar

potencies and intrinsic efficacies to endogenous ligands

released from the sympathetic fibers (noradrenaline

and adrenaline) and high affinity to the nonspecific α1-

adrenoceptor antagonist prazosin (Hieble and Ruffolo

1996). A fourth subtype has been proposed based on its

lower affinity to prazosin. The receptor subtype, desig-

nated α1L-adrenoceptor, is probably not a disctint recep-

tor but rather a low-affinity state of the α1A-adrenoceptor

(Ford et al. 1997, Daniels et al. 1999) and has been

reported to be involved in smooth muscle contraction

of human, rabbit and dog lower urinary tract tissues

(Muramatsu et al. 1994, Ford et al. 1996, Testa et al.

1996, Fukasawa et al. 1998) with an important role in

the treatment of stress urinary incontinence (Bishop

2007). The antagonists 5-methyl urapidil, WB 4101 and

niguldipine show higher affinity for α1A-adrenoceptors,

while BMY 7378 recognizes preferentially α1D-adreno-

ceptors (Deng et al. 1996, Saussy et al. 1996, Yang et al.

1997). The alkylating agent chloroethylclonidine is an

irreversible antagonist that mostly inactivates both α1B-

and α1D-adrenoceptors (Laz et al. 1994, Hieble et al.

1995, Xiao and Jeffries 1998).

α1-adrenoceptors are preferentially coupled with

Gq/11 protein and activate phospholipase Cβ to form DAG

and IP3, inducing consequent increase in cytosolic con-

centration of Ca2+ and PKC, which in turn phospho-

rylates several substrates (Zhong and Minneman 1999,

Hein and Michel 2007). The relative coupling efficien-

cies to second messenger formation differs depending

on the receptor subtype (α1A > α1B > α1D; Theroux

et al. 1996, Zhong et al. 2001). There are also evi-

dences that, depending on the cell or tissue which were

analyzed, α1-adrenoceptors can also couple with dif-

ferent G protein (Gi, Gs and Gh; Horie et al. 1995,

Hu and Nattel 1995, Chen et al. 1996, Nakaoka et al.

1994, Shinoura et al. 2002) activating different signal-

ing pathways to modulate cellular function (Michelotti

et al. 2000, Wier and Morgan 2003) and possibly modu-

lating L-type calcium, sodium and cation channels from

TRP family (Yoshinaga et al. 1999, Murray et al. 1997,

Thebault et al. 2005).
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The complexity of the events involved in α1-adre-

noceptor activation is further demonstrated by the fact

that several interacting proteins can allow differential

signalling, regulation and subcellular localization for

each subtype α1-adrenoceptors (Hu and Nattel 1995,

Chen et al. 1996, Wang et al. 2005, Xu et al. 1999).

Also, there are evidences that α1A-, α1B- and α1D-adre-

noceptors are all capable to form homodimers and

homotrimers (Vicentic et al. 2002). Oligomerization of

α1B-adrenoceptors seems to be required for proper re-

ceptor function, since mutations of putative key hydro-

phobic residues in transmembrane domain TM1 and

transmembrane domain TM4 prevent receptor oligomer-

ization and result in impaired α1B-adrenoceptor cell-sur-

face expression and signaling (Lopez-Gimenez et al.

2007. α1-adrenoceptors are also capable to heterodimer-

ize (Uberti et al. 2003, 2005, Hague et al. 2004a).

The subcellular localization of the α1-adrenoceptor

subtypes can also confer distinct receptor function,

as known to occur with other G-protein-coupled recep-

tors (for review see Gobeil et al. 2006). The presence

of intracellular α1-adrenoceptors has been described

in the literature (Piascik and Perez 2001, Hirasawa et

al. 2001, Toews et al. 2003). Studies with recombi-

nant receptor have identified a characteristic distribu-

tion of α1A-adrenoceptors throughout the cytoplasm

of the cell, whereas α1B-adrenoceptors mainly present

classic plasma membrane labeling pattern (Hirasawa et

al. 1997, Sugawara et al. 2002). Intracellular staining of

α1A-adrenoceptors in epithelial cells of the epididymis,

vas deferens and seminal vesicle of rats has been also

reported (Queiróz et al. 2008), confirming that this loca-

tion of the receptor might be important in physiological

events. In human prostatic smooth muscle cells, approx-

imately 40% of the α1-adrenoceptors were intracellular,

particularly concentrated around the nucleus (Macken-

zie et al. 2000). Similar results were observed in cul-

tured vascular smooth muscle cells and rat-1 fibroblasts

transfected with the α1-adrenoceptor subtypes, although

significant expression of α1A-adrenoceptor in these cells

was located in the plasma membrane (Hrometz et al.

1999, McCune et al. 2000). Conversely, α1D-adreno-

ceptors are expressed almost exclusively in the intracel-

lular compartment from different cell types (Hirasawa

et al. 1997, McCune et al. 2000, Chalothorn et al.

2002, Hague et al. 2004b), probably because of the N-

terminal region of the protein that regulates expression

of functional receptors in the cell membrane (Hague et

al. 2004a, b). α1-adrenoceptors can bind competitively

to the fluorescent antagonist BODIPY FL–prazosin

(Daly et al. 1998, Mackenzie et al. 2000, Sugawara

et al. 2002), raising the possibility that these receptors

are probably functional and involved in signal transduc-

tion. Possible ligands for these intracellular receptors

could be catecholamines penetrating the cells either by

diffusion/lipophilicity or through transport by transmem-

brane carriers in postsynaptic cells (Mackenzie et al.

2000, Haag et al. 2004).

Functional, molecular and radioligand binding

studies have been extensively used to characterize func-

tion and tissue distribution of α1-adrenoceptor in dif-

ferent tissues from different species, including humans

(Langer 1999, Zhong and Minneman 1999, Varma and

Deng 2000, Rokosh et al. 1994, Hieble et al. 1995,

Price et al. 1994a, b, Rudner et al. 1999, Silva et al.

1999, Errasti et al. 2003, Scarparo et al. 2004). The

heterogeneity of α1-adrenoceptors is a common find-

ing in tissues of the male reproductive tract of rats and

humans, including testis, prostate (Rokosh et al. 1994,

Scofield et al. 1995, Nasu et al. 1996, 1998, Patrão et

al. 2008), testis capsule (Jurkiewicz et al. 2006), semi-

nal vesicle (Silva et al. 1999, Mendes et al. 2004, Patrão

et al. 2008) and epididymis (Queiróz et al. 2002, Patrão

et al. 2008). In all these tissues, a predominance of the

Adra1a mRNA subtype is observed. High abundance

of Adra1d transcripts is found in rat cauda epididymis

(Queiróz et al. 2002), seminal vesicle (Silva et al. 1999,

Mendes et al. 2004) and human prostate (Nasu et al.

1998, Moriyama et al. 1996), while vas deferens, epi-

didymis and other genitourinary tissues present abun-

dant Adra1a and Adra1d mRNAs with relative low lev-

els of Adra1b transcripts (Piascik et al. 1997, Queiróz

et al. 2002). Levels of Adra1b and Adra1d mRNAs

vary during rat brain development, showing that differ-

ent receptor subtypes may have different ontogenic pat-

terns of distribution leading to differential tissue response

during development (McCune and Hill 1995, Alonso-

Llamazares et al. 1998).
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Functional studies also reveal that a predominant

population of α1A-adrenoceptors is involved in the con-

tractile response of smooth muscle from vas deferens,

prostate and seminal vesicle (Mallard et al. 1992, Aboud

et al. 1993, Yazawa and Honda 1993, Lepor et al. 1994,

Teng et al. 1994, Burt et al. 1995, 1998, Pupo 1998,

Silva et al. 1999). Interestingly, the presence of α1A-

and α1B-adrenoceptors is detected in rat vas deferens by

radioligand binding studies (Hanft and Gross 1989, Sal-

lés and Badia 1991, Vivas et al. 1997), indicating that

the correlation of binding and functional assays are not

always directly correlated (Zhong and Minneman 1999).

However, the contractions of vas deferens from cypro-

terone acetate-treated rats involves the participation of

both α1A- and α1B-adrenoceptors, indicating that this

antiandrogen induces plasticity in the functional α1-

adrenoceptor subtypes in the rat vas deferens (Campos

et al. 2003). Divergence between receptor detection

through functional methods versus molecular biology

methods has also been discussed by Forray et al. (1994)

and MacKinnon et al. (1994). Participation of α1A-

adrenoceptor in the contractile response of cauda epi-

didymis from mouse (Hib and Caldeyro-Barcia 1974), in

spontaneous contractions of rat epididymis regions (Da

Silva et al. 1975, Hib 1976, Chaturapanich et al. 2002)

and in events related to epithelial function such as elec-

trolyte transport (Leung et al. 1992, Chan et al. 1994)

and protein processing (Ricker et al. 1996) have been re-

ported. A predominant population of α1A-adrenoceptor

in rat epidiymis has been also confirmed by radioligand

binding assays (Queiróz et al. 2002) and immunohisto-

chemistry, which located this receptor subtype in smooth

muscle and in subpopulations of epithelial cells from

human and rat epididymis (Queiróz et al. 2008) and

rhesus monkey (Patrão et al. 2008). The expression of

different α1-adrenoceptor mRNA subtypes are known

to occur along rat epididymis (Queiróz et al. 2002), rais-

ing the possibility of possible differential importance of

α1-adrenoceptor subtypes in different epididymal cells

during physiological and pathological events, including

effects on male fertility. In fact, studies by Bhathal et al.

(1974) and Ratnasooriya and Wadsworth (1990, 1994)

have shown that the rat epididymis is significantly af-

fected by α1-adrenoceptor blockade. In vivo treatment

with different α1-adrenoceptor antagonists induces a de-

crease in ejaculatory capacity associated with a reduc-

tion in the fertilization ability of the sperm, suggest-

ing a role for the sympathetic nervous system in fertil-

ity maintenance via α1-adrenoceptors (Ratnasooriya and

Wadsworth 1990, 1994).

Although it is known that, in most tissues, mixtures

of α1-adrenoceptor subtypes (mRNA and protein) are

concomitantly expressed, with variable relative expres-

sion levels (Zhong and Minneman 1999), quantification

and localization of all three α1-adrenoceptor subtypes at

protein level have been difficult to be determined mainly

due to the lack of pharmacological tools with selectiv-

ity or specificity, and the high degree of conservation

of the α1-adrenoceptor subtypes. Selective antibodies

against ADRA1A, ADRA1B and ADRA1D have been

successfully reported in few studies. Detection of these

proteins in tissue extracts by Western blot analysis has

been shown with different rat tissues, including vas def-

erens and prostate (Manni et al. 2005, 2006, Shen et al.

2000). Immunohistochemical detection of ADRA1A in

human prostate (Walden et al. 1999), human peripheral

blood lymphocytes (Tayebati et al. 2000) and in differ-

ent tissues of the male reproductive tract of rats, humans

(Queiróz et al. 2008) and rhesus monkeys (Patrão et al.

2008) have also been reported.

Regulation of α1-adrenoceptors has been shown to

occur under a variety of conditions, including hypoxia,

ischemic reperfusion, catecholamine stimulation, cAMP

levels, growth factors, hormonal factors and ageing

(Markus and Avellar 1997, Zuscik et al. 1999, Gao

and Kunos 1993, 1994, Ramarao et al. 1992, Rokosh

et al. 1996, Michelotti et al. 2003, Queiróz et al. 2002,

Mendes et al. 2004). In fact, changes in androgen sta-

tus with either sexual maturation or castration differen-

tially regulate the expression of α1-adrenoceptor sub-

types in several tissues, including the male reproduc-

tive tract of different species (MacDonald and Mac-

Grath 1980, Petitti et al. 1992, Shima 1992, Karkanias

et al. 1996, Lacey et al. 1996, Pupo 1998, Homma

et al. 2000, Queiróz et al. 2002, Quesada and Etgen

2002, Mendes et al. 2004, Campos et al. 2003, Queiróz

et al. 2008). 17β-estradiol has been shown to increase

α1B-adrenoceptor binding sites and its pharmacological
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response to agonist stimulation in the hypothalamus and

preoptic area of female rats (Petitti et al. 1992, Karka-

nias et al. 1996, Quesada and Etgen 2002), suggesting

that regulation of α1-adrenoceptor by steroid hormones

may be dependent on the gender analyzed.

α1-adrenoceptor antagonists are extensively used

in the treatment of hypertension and lower urinary tract

symptoms associated with benign prostatic hyperplasia

(Roehrborn and Schwinn 2004). Clinical studies have

reported ejaculatory dysfunction in patients submitted to

treatment with α1-adrenoceptor antagonists, especially

in those treated with tamsulosin and silodosin, which

are selective to α1A-adrenoceptors (Debruyne 2000, van

Dijk et al. 2006). It has been reported that in vivo treat-

ment of rats with different α1-adrenoceptor antagonists

induces a decrease in the ejaculatory capacity associ-

ated with a reduction in the fertilization ability of the

sperm (Ratnasooriya and Wadsworth 1990, 1994). Re-

cently, Sanbe et al. (2007) have confirmed that the male

mouse, with targeted disruption of all α1-adrenoceptor

subtypes (α1-adrenoceptor triple-knockout mouse), is in-

fertile due to an impairment of sperm ejaculation caused

by the loss of normal contractility mainly induced by

α1A-adrenoceptor in the vas deferens. However, the fer-

tilization ability of the isolated sperm and sperm motility

of these animals are normal.

RELAXIN RECEPTORS: EXPRESSION AND FUNCTION
IN THE MALE REPRODUCTIVE TRACT

In addition to the influence of steroid hormones and

neurotransmitters, the male reproductive tissues are also

under control of other factors and hormones. Relaxin is

one the novel peptide hormones which can be important

for the normal male reproductive function.

Relaxin is a 6 kDa peptide that belongs to a super-

family of hormones structurally related to insulin, which

also includes, among others, the insulin-like growth fac-

tors (IGFs) and the insulin-like peptide from Leydig cells

(INSL3) (for review see Sherwood 2004). Relaxin was

initially detected only in females as a hormone to help

parturition, but it has several other functions related or

not with the reproductive function (for review see Sher-

wood 2004, Bathgate et al. 2006). Some of the relaxin

actions, such as induction of collagen remodeling and

softening of the cervix to help parturition, inhibition of

uterine contractility and stimulation of mammary glands

growth and differentiation, have been known for a long

time. Recently, several other activities, related or not

with the reproductive function have been attributed to

relaxin, including the dilation of blood vessels in sev-

eral tissues, a positive chronotropic action, the release of

histamine from mastocytes, reduction of platelet aggre-

gation, stimulation of thirst and vasopressin secretion,

stimulation of prolactin release, and antifibrotic and an-

tiapoptotic effects, to name a few.

In humans, three forms of relaxins (relaxins 1, 2

and 3) are found and they are encoded by three different

genes (H1, H2 and H3). The H1 and H2 genes are local-

ized in the short arm of the chromosome 9, and probably

resulted from gene duplication during the evolution of

the primates. The H3 gene is localized in the chromo-

some 19, near to the gene that encodes INSL3. The H2

gene is expressed in ovary, placenta, decidua and pros-

tate gland (Gunnersen et al. 1996) and the H1 gene only

in the last three tissues (Hansell et al. 1991). The recently

discovered H3 gene (Bathgate et al. 2002) appears to be

mainly expressed in the brain. Although the aminoacid

sequences of the relaxins H1 and H2 differ considerably,

their biological activity is similar, whereas the biological

activity of the relaxin H3 is higher.

Only two forms of relaxin have been described in

rodents. The relaxin 1 in these animals is encoded by an

ortologue of the H2 gene in humans. The relaxin 3 in

mouse and rat is derived from an orthologue of the H3

gene (Bathgate et al. 2002, Burazin et al. 2002).The only

form of relaxin so far detected in plasma from pregnant

animals is derived from the H2 gene and its orthologues

in various species.

Relaxin was discovered in 1926 by Frederic L. Hi-

saw, who found that the injection of serum from preg-

nant guinea pigs or rabbits into virgin guinea pigs in-

duced a relaxation of the pubic ligament (Hisaw 1926).

The active principle was extracted in 1930 (Fevold et al.

1930), but the purified hormone was only obtained in

1974 (for review see Sherwood 2004). Relaxin is com-

posed of two peptide chains, A and B, which are linked

by disulphide bonds. The binding site to the receptors is

localized in the B chain, while the A chain determines

the binding specificity. Similar to insulin, relaxin is syn-

thesized from a precursor, pre-prorelaxin, by sequen-
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tial proteolytic digestion of the signal peptide and the

peptide that connects the two peptide chains (Ivell and

Einspanier 2002).

Although relaxin was discovered a long time ago,

the identity of its receptors remained unknown until

2002, when Hsu et al. described that relaxin could

bind to and activate the G-protein-coupled receptors

(GPCRs) RXFP1 and RXFP2, formerly known as LGR7

and LGR8, respectively. The human relaxins H1 and H2

and porcine relaxin 1 strongly bind to and activate both

RXFP1 and RXFP2 with almost the same affinity, but

the rat relaxin 1 binds only weakly to RXFP2 (Hsu et al.

2002, Scott et al. 2005). Although relaxin can bind to

and activate both the recombinant RXFP1 and RXFP2

expressed in HEK 293 cells (Hsu et al. 2002), it is now

recognized that RXFP1 is the endogenous receptor for

relaxin, and RXFP2 the endogenous receptor for INSL3

(Zimmermann et al. 1999, Feng et al. 2006).

These two receptors belong to a subfamily of

GPCRs, now called leucine-rich repeat-containing

GPCRs (LGRs), which also includes the receptors for

the gonadotropins LH and FSH, the TSH receptor and

the more recently described sea anemone LGR (Notha-

cker and Grimmelikhuijzen 1993), snail LGR (Tensen

et al. 1994), fruit fly LGR1 and LGR2 (Hauser et al.

1997, Nishi et al. 2000), nematode LGR (Kudo et al.

2000) and the LGRs 4, 5 and 6 (Hsu et al. 2000, 2002).

Some of these LGRs (LGR 1 to 6) have still unknown

ligands. Relaxin 3 binds to RXFP1, but probably its

physiological target is the small peptide-like RXFP3 (Liu

et al. 2003), the formerly orphan receptor GPCR 135 (for

review see Bathgate et al. 2006, Halls et al. 2007).

All members of the LGR subfamily contain a

large extracellular amino terminal domain consisting of

three subdomains: a N-terminal cysteine-rich subdomain

(NCR) followed by a leucine-rich repeat-containing sub-

domain (LRR subdomain) and a C-terminal cysteine-

subdomain (CCR). The leucine-rich repeats in the LRR

subdomain presents several β-strands and have been pos-

tulated to form a horseshoe shape which is important for

hormone binding (Jiang et al. 1995). The CCR subdo-

main is a hinge region that allows contact between the

amino terminal region and the transmembrane domains

of the receptor after activation by the hormone. Another

interesting feature is that RXFP1 and RXFP2 are distin-

guished from other members of the LGR subfamily, and

from other GPCRs in general, by a unique low-density

lipoprotein class A module (LDL-A) at the aminotermi-

nus of the ectodomain. Studies with chimeras between

RXFP1 and RXFP2 revealed that both the ectodomain

and the transmembrane domain of the receptors are nec-

essary for optimal binding and signal transduction (Halls

et al. 2005). The unique LDL-A module of RXFP1 and

RXFP2 seems crucial for activation of receptor signal-

ing (Scott et al. 2006, Kern et al. 2007).

Relaxin can increase cyclic AMP after interacting

with recombinant RXFP1 and RXFP2 in heterologous

systems (Hsu et al. 2002, Sudo et al. 2003, Halls et

al. 2006). Relaxin can also stimulate endogenous re-

ceptors to increase cyclic AMP in many reproductive

(Sanborn et al. 1980, Cheah and Sherwood 1980, Jud-

son et al. 1980, Braddon 1978) and non-reproductive

tissues (Bathgate et al. 2006), and other downstream sig-

naling reactions can be activated after the production of

cyclic AMP, such as tyrosine kinase or mitogen-activated

protein kinase activation, and inhibition of phosphodi-

esterase (for review see Bathgate et al. 2006, Halls et al.

2007). The accumulation of cyclic AMP induced by re-

laxin in cells that endogenously express RXFP1 involves

a time-dependent biphasic pathway: an early phase that

involves coupling to Gs, and a delayed phase that in-

volves activation of PI3K and PKCζ . In cells expressing

the recombinant RXFP1, studies confirmed this bipha-

sic pattern of cyclic AMP stimulation by relaxin, and

showed that the delayed phase involving PI3K and PKC

was dependent on βγ subunits of the Gαi3. Activation

of recombinant RXFP2 by INSL3, on the other hand, in-

volved an initial activation of Gαs that was modulated

by an inhibition mediated by GαoB and the release of in-

hibitory G-βγ subunits (Halls et al. 2006). Therefore,

initially both RXFP1 and RXFP2 stimulate cyclic AMP

accumulation, but RXFP1 also activates a delayed path-

way that further increases cyclic AMP accumulation.

With the recent availability of knockout animals for

relaxin or its receptors, it has been possible to establish

the physiological importance of this hormone. Relaxin

has an antifibrotic effect in several tissues, and the re-

laxin knockout mouse is a model of fibrosis (Samuel et

al. 2003a, b, 2005). Relaxin interferes with collagen

metabolism and increases the expression and activity of
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metalloproteinases (MMPs) in uterine, cardiac, vascular

and renal tissues (Jeyabalan et al. 2003, 2007, Lenhart

et al. 2001, Mookerjee et al. 2005).

In the reproductive tract of female mice, the dis-

ruption of relaxin or Rxfp1 gene causes the same abnor-

malities: an absence of the relaxation and the elongation

of the interpubic ligament and impaired nipple develop-

ment (Zhao et al. 1999, Krajnc-Franken et al. 2004).

The physiological role of relaxin in the male is not so

well defined and we will next present some data obtained

in our laboratory and from the literature related to the role

of relaxin in the male reproductive tissues.

The main evidence of the important role of relaxin

for male reproductive function came from observations

in transgenic mice with a disruption of relaxin or re-

laxin receptor genes. In male mice, the disruption of

the relaxin gene causes a delayed development of the

reproductive tract, with an arrest of sperm maturation

(Samuel et al. 2003a), but the disruption of Rxfp1 does

not alter testes or prostate (Kamat et al. 2004), and im-

pairs spermatogenesis and reduces fertility only in the

first generations of knockout animals (Krajnc-Franken

et al. 2004). The interaction of INSL3 with RXFP2

controls the differentiation of the gubernaculum, the

caudal genitoinguinal ligament critical for testicular de-

scent, and deletion of Insl3 or Rxfp2 causes cryptorchi-

dism (Zimmermann et al. 1999). Transgenic overexpres-

sion of relaxin did not prevent cryptorchidism in Insl3-

knockout animals (Feng et al. 2006). These observations

strongly support the idea that, although both RXFP1 and

RXFP2 can bind relaxin in vitro, relaxin does not physi-

ologically activate RXFP2. Nevertheless, a contribution

of RXFP2 to the actions of relaxin in some species can-

not be completely excluded.

The relaxin source in males seems to vary depend-

ing on the species. In humans and many other mammals,

relaxin is produced by the prostate and released almost

exclusively in the seminal fluid. The relaxin mRNA has

been detected in human prostate by RT-PCR and in situ

hybridization (for review see Sherwood 2004, Ivell et

al. 1989, Gunnersen et al. 1996, Bogic et al. 1995).

There are few reports on immunohistochemical local-

ization of relaxin in the male tract. Relaxin immunos-

taining has been detected in the human prostate, seminal

vesicle and ampullary part of the vas deferens (Sokol

et al. 1989, Yki-Jarvinen et al. 1983). In other species,

testis (shark) or seminal vesicle (boar) may be the main

source of the hormone (Steinetz et al. 1998, Kohsaka et

al. 1992). The source of relaxin in the male rat is con-

troversial. Immunohistochemistry studies have failed to

demonstrate relaxin expression in testis, prostate, semi-

nal vesicle and epididymis (Anderson et al. 1986), but

the mRNA for relaxin has been detected in prostate and

testis (Gunnersen et al. 1995).

Regarding the expression of relaxin receptors in the

various tissues of the male tract, data available in the

literature are scarce. Transcripts for both RXFP1 and

RXFP2 have been identified in the whole rat testis and in

germ cells (Anand-Ivell et al. 2006, Filonzi et al. 2007),

but in primary culture of Sertoli cells only RXFP1 has

been found (Filonzi et al. 2007). Rxfp2 but not Rxfp1

transcripts are present in Leydig cells. The RXFP1 pro-

tein has been detected in elongated spermatids and in

rat Sertoli cells (Filonzi et al. 2007), and the RXFP2

protein in human Leydig and germ cells (Anand-Ivell

et al. 2006). The role of relaxin receptors in the adult

testis remains to be determined. Since RXFP1 recep-

tors are expressed in germ cells during specific stages

of the development, one may speculate that relaxin par-

ticipates in the spermatogenic process. In addition, the

localization of RXFP1 receptors in Sertoli cells suggests

that the hormone plays a role in spermatogenesis. Data

about the role of relaxin in mature spermatozoa are con-

troversial. Whereas some data in the literature support

a role for relaxin in sperm motility (Sarosi et al. 1983,

Essig et al. 1982), we detected only low levels of Rxfp1

mRNA in mature spermatozoa, and RXFP1 protein was

undetectable (Filonzi et al. 2007). Other studies have

also failed to find an effect of relaxin on sperm function

(Jockenhovel et al. 1990, Newinger et al. 1990).

The transcripts of Rxfp1 and Rxfp2 are present in

the caput and cauda regions of the rat epididymis (Filonzi

et al. 2007). Rxfp2 transcripts were also found in the hu-

man epididymis (Anand-Ivell et al. 2006). Transcripts

of Rxfp1 and Rxfp2 have also been identified in the sem-

inal vesicle, but in the prostate only Rxfp1 mRNA was

detected (Filonzi et al. 2007).

The levels of RXFP1 and RXFP2 receptor tran-

scripts were particularly high in the vas deferens and

comparable to the levels seen in the testis (Filonzi et al.
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2007). Strong immunostaining for RXFP1 and RXFP2

was seen in the apical portion of epithelial cells, in the

longitudinal and circular muscular layers, and in the

arteriolar wall of blood vessels of the vas deferens. Al-

though relaxin is classically known to reduce uterine tone

(Sanborn et al. 1980, for review see Sherwood 2004), it

does not affect the contractility of the vas deferens. In

this tissue, however, relaxin may be involved in other

functions. RXFP1 receptors detected in the arteriolar

walls may control local vascular resistance (Filonzi et

al. 2007). Furthermore, relaxin increases the expression

of metaloproteinase 7 gene in the vas deferens, which

may be involved in collagen and matrix remodeling and/

or apoptosis (Ii et al. 2006). In fact, a significant in-

crease in the collagen expression in the prostate and

testis of relaxin knockout mice has been documented

before (Samuel et al. 2003a). It remains to be investi-

gated whether RXFP1 receptors in the epithelium of the

vas deferens are involved in the regulation of secretion.

CONCLUSIONS

Muscarinic acetylcholine receptors, α1-adrenoceptors

and relaxin receptors are often co-localized in tissues of

the male reproductive system and may act in concert to

regulate several aspects of reproduction. In testis, all sub-

types of muscarinic acetylcholine receptors are found in

Sertoli cells, where they might counteract FSH-induced

cyclic AMP accumulation, influence protein synthesis,

cell proliferation and cell junction dynamics. The relaxin

receptor RXFP1 expressed in Sertoli cells increases cell

proliferation and may also affect protein synthesis, act-

ing in the same direction as FSH. These receptors may

therefore indirectly affect spermatogenesis. In addition,

RXFP1 is found in late stage germ cells, and muscarinic

acetylcholine receptors are found in spermatozoa, sup-

porting their role in spermatogenesis. All these GPCRs

are widely distributed in the excurrent ducts of the male

tract: efferent ducts, epididymis and vas deferens. Their

localization in epithelial cells suggests a role in secre-

tory and absorptive processes, and they may stimulate

protein synthesis, therefore affecting sperm composition.

Muscarinic acetylcholine receptors and α1-adrenoceptor

are also involved in the modulation of the contraction

of smooth muscle cells lining these ducts, while the re-

laxin receptor is more likely involved in the architec-

ture of these tissues. Muscarinic acetylcholine receptors

and α1-adrenoceptors are also involved in events of pro-

tein secretion, mitosis, differentiation and smooth mus-

cle contraction in seminal vesicle and prostate.

Although several aspects of muscarinic acetylcho-

line receptors, with α1-adrenoceptors and relaxin recep-

tors have been clarified in the recent years, much still

remains to be elucidated about their relative contribution

and interaction to control male reproductive function,

as well as the mechanisms involved in the regulation

of their expression and respective intracellular signal-

ing induced upon activation by a ligand. These stud-

ies will certainly provide information that may aid the

therapeutics of male infertility and male contraception,

since receptors are targets for the development of selec-

tive therapeutic agents and pharmacological manipula-

tion of physiological processes.
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RESUMO

Esta revisão enfatiza a expressão e a função dos receptores

muscarínicos, adrenoceptores α1 e receptores para relaxina

no sistema reprodutor masculino. A expressão dos receptores

muscarínicos e adrenoceptores α1 em compartimentos especí-

ficos de dúctulos eferentes, epidídimo, ductos deferentes, vesí-
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cula seminal e próstata de várias espécies indica o envolvi-

mento destes receptores na modulação da composição do flui-

do luminal e na contração do músculo liso, incluindo efeitos

na fertilidade masculina. Além disso, a ativação dos recep-

tores muscarínicos leva à transativação do receptor para o fa-

tor crescimento epidermal e proliferação das células de Ser-

toli. Os receptores para relaxina estão presentes no testículo,

RXFP1 nas espermátides alongadas e células de Sertoli de rato

e RXFP2 nas células de Leydig e germinativas de ratos e hu-

mano, sugerindo o envolvimento destes receptores no proces-

so espermatogênico. A localização de ambos os receptores na

porção apical das células epiteliais e no músculo liso dos ductos

deferentes de rato sugere um papel na contração e na regulação

da secreção.

Palavras-chave: receptores muscarínicos, adrenoceptores α1,

receptores para relaxina, sistema reprodutor masculino.
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