472 research outputs found
Measurement of H<sub>2</sub>O<sub>2</sub> within living drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix
Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is central to mitochondrial oxidative damage and redox signaling, but its roles are poorly understood due to the difficulty of measuring mitochondrial H<sub>2</sub>O<sub>2</sub> in vivo. Here we report a ratiometric mass spectrometry probe approach to assess mitochondrial matrix H<sub>2</sub>O<sub>2</sub> levels in vivo. The probe, MitoB, comprises a triphenylphosphonium (TPP) cation driving its accumulation within mitochondria, conjugated to an arylboronic acid that reacts with H<sub>2</sub>O<sub>2</sub> to form a phenol, MitoP. Quantifying the MitoP/MitoB ratio by liquid chromatography-tandem mass spectrometry enabled measurement of a weighted average of mitochondrial H<sub>2</sub>O<sub>2</sub> that predominantly reports on thoracic muscle mitochondria within living flies. There was an increase in mitochondrial H<sub>2</sub>O<sub>2</sub> with age in flies, which was not coordinately altered by interventions that modulated life span. Our findings provide approaches to investigate mitochondrial ROS in vivo and suggest that while an increase in overall mitochondrial H<sub>2</sub>O<sub>2</sub> correlates with aging, it may not be causative
Selective Uncoupling of Individual Mitochondria within a Cell Using a Mitochondria-Targeted Photoactivated Protonophore
Depolarization of an individual mitochondrion or small clusters of mitochondria within cells has been achieved using a photoactivatable probe. The probe is targeted to the matrix of the mitochondrion by an alkyltriphenylphosphonium lipophilic cation and releases the protonophore 2,4-dinitrophenol locally in predetermined regions in response to directed irradiation with UV light via a local photolysis system. This also provides a proof of principle for the general temporally and spatially controlled release of bioactive molecules, pharmacophores, or toxins to mitochondria with tissue, cell, or mitochondrion specificity
Detection of interstellar oxidaniumyl: abundant H2O+ towards the star-forming regions DR21, Sgr B2, and NGC6334
We identify a prominent absorption feature at 1115 GHz, detected in first
HIFI spectra towards high-mass star-forming regions, and interpret its
astrophysical origin. The characteristic hyperfine pattern of the H2O+
ground-state rotational transition, and the lack of other known low-energy
transitions in this frequency range, identifies the feature as H2O+ absorption
against the dust continuum background and allows us to derive the velocity
profile of the absorbing gas. By comparing this velocity profile with velocity
profiles of other tracers in the DR21 star-forming region, we constrain the
frequency of the transition and the conditions for its formation. In DR21, the
velocity distribution of H2O+ matches that of the [CII] line at 158\mu\m and of
OH cm-wave absorption, both stemming from the hot and dense clump surfaces
facing the HII-region and dynamically affected by the blister outflow. Diffuse
foreground gas dominates the absorption towards Sgr B2. The integrated
intensity of the absorption line allows us to derive lower limits to the H2O+
column density of 7.2e12 cm^-2 in NGC 6334, 2.3e13 cm^-2 in DR21, and 1.1e15
cm^-2 in Sgr B2.Comment: Accepted for publication in A&
Discovery of an intermediate-luminosity red transient in M51 and its likely dust-obscured, infrared-variable progenitor
We present the discovery of an optical transient (OT) in Messier 51,
designated M51 OT2019-1 (also ZTF19aadyppr, AT 2019abn, ATLAS19bzl), by the
Zwicky Transient Facility (ZTF). The OT rose over 15 days to an observed
luminosity of (), in the
luminosity gap between novae and typical supernovae (SNe). Spectra during the
outburst show a red continuum, Balmer emission with a velocity width of
km s, Ca II and [Ca II] emission, and absorption features
characteristic of an F-type supergiant. The spectra and multiband light curves
are similar to the so-called "SN impostors" and intermediate-luminosity red
transients (ILRTs). We directly identify the likely progenitor in archival
Spitzer Space Telescope imaging with a m luminosity of
and a color redder than 0.74 mag, similar
to those of the prototype ILRTs SN 2008S and NGC 300 OT2008-1. Intensive
monitoring of M51 with Spitzer further reveals evidence for variability of the
progenitor candidate at [4.5] in the years before the OT. The progenitor is not
detected in pre-outburst Hubble Space Telescope optical and near-IR images. The
optical colors during outburst combined with spectroscopic temperature
constraints imply a higher reddening of mag and higher
intrinsic luminosity of
() near peak than seen in previous ILRT
candidates. Moreover, the extinction estimate is higher on the rise than on the
plateau, suggestive of an extended phase of circumstellar dust destruction.
These results, enabled by the early discovery of M51 OT2019-1 and extensive
pre-outburst archival coverage, offer new clues about the debated origins of
ILRTs and may challenge the hypothesis that they arise from the
electron-capture induced collapse of extreme asymptotic giant branch stars.Comment: 21 pages, 5 figures, published in ApJ
Recommended from our members
Beyond handover: supporting awareness for continuous coverage
Abstract Hospitals are required to operate as a continuous system because patient care cannot be temporarily suspended and handover is seen as a key method for enabling this. This paper reports a study of handover in a medical admissions unit. We draw on the notion of awareness as conceptualised within the Computer Supported Cooperative Work literature to explore the role played by a variety of cognitive artifacts in supporting continuous coverage. While such awareness is typically characterised as being ‘effortless’, our study reveals that maintaining awareness in a context such as the medical admissions unit is effortful due to invisible work. We suggest that the notion of awareness is beneficial for exploring the practices of continuous coverage because it moves attention away from the moment of handover, instead encouraging consideration of the variety of practices through which clinicians display their work to, and monitor the work of, colleagues on different shifts. We argue that efforts to support continuous coverage should focus on improving awareness by increasing the visibility of information
Antiretroviral therapy partially improves the abnormalities of dendritic cells and lymphoid and myeloid regulatory populations in recently infected HIV patients
This study aimed to evaluate the effects of antiretroviral therapy on plasmacytoid (pDC) and myeloid
(mDC) dendritic cells as well as regulatory T (Treg) and myeloid-derived suppressor (MDSC) cells in HIVinfected
patients. Forty-five HIV-infected patients (20 of them with detectable HIV load −10 recently
infected and 10 chronically infected patients-, at baseline and after antiretroviral therapy, and 25 with
undetectable viral loads) and 20 healthy controls were studied. The influence of HIV load, bacterial
translocation (measured by 16S rDNA and lipopolysaccharide-binding protein) and immune activation
markers (interleukin –IL- 6, soluble CD14, activated T cells) was analyzed. The absolute numbers and
percentages of pDC and mDC were significantly increased in patients. Patients with detectable viral
load exhibited increased intracellular expression of IL-12 by mDCs and interferon -IFN- α by pDCs.
Activated population markers were elevated, and the proportion of Tregs was significantly higher in
HIV-infected patients. The MDSC percentage was similar in patients and controls, but the intracellular
expression of IL-10 was significantly higher in patients. The achievement of undetectable HIV load
after therapy did not modify bacterial translocation parameters, but induce an increase in pDCs, mDCs
and MDSCs only in recently infected patients. Our data support the importance of early antiretroviral
therapy to preserve dendritic and regulatory cell function in HIV-infected individuals
TNF autovaccination induces self anti-TNF antibodies and inhibits metastasis in a murine melanoma model
TNF is a proinflammatory cytokine involved in the pathogenesis of chronic inflammatory diseases, but also in metastasis in certain types of cancer. In terms of therapy, TNF is targeted by anti-TNF neutralising monoclonal antibodies or soluble TNF receptors. Recently, a novel strategy based on the generation of self anti-TNF antibodies (TNF autovaccination) has been developed. We have previously shown that TNF autovaccination successfully generates high anti-TNF antibody titres, blocks TNF and ameliorates collagen-induced arthritis in DBA/1 mice. In this study, we examined the ability of TNF autovaccination to generate anti-TNF antibody titres and block metastasis in the murine B16F10 melanoma model. We found that immunisation of C57BL/6 mice with TNF autovaccine produces a 100-fold antibody response to TNF compared to immunisation with phosphate-buffered saline vehicle control and significantly reduces both the number (P<0.01) and size of metastases (P<0.01) of B16F10 melanoma cells. This effect is also observed when an anti-TNF neutralising monoclonal antibody is administered, confirming the essential role TNF plays in metastasis in this model. This study suggests that TNF autovaccination is a cheaper and highly efficient alternative that can block TNF and reduce metastasis in vivo and trials with TNF autovaccination are already underway in patients with metastatic cancer
Cellular responses to modified Plasmodium falciparum MSP119 antigens in individuals previously exposed to natural malaria infection
<p>Abstract</p> <p>Background</p> <p>MSP1 processing-inhibitory antibodies bind to epitopes on the 19 kDa C-terminal region of the <it>Plasmodium falciparum </it>merozoite surface protein 1 (MSP1<sub>19</sub>), inhibiting erythrocyte invasion. Blocking antibodies also bind to this antigen but prevent inhibitory antibodies binding, allowing invasion to proceed. Recombinant MSP1<sub>19 </sub>had been modified previously to allow inhibitory but not blocking antibodies to continue to bind. Immunization with these modified proteins, therefore, has the potential to induce more effective protective antibodies. However, it was unclear whether the modification of MSP1<sub>19 </sub>would affect critical T-cell responses to epitopes in this antigen.</p> <p>Methods</p> <p>The cellular responses to wild-type MSP1<sub>19 </sub>and a panel of modified MSP1<sub>19 </sub>antigens were measured using an <it>in-vitro </it>assay for two groups of individuals: the first were malaria-naïve and the second had been naturally exposed to <it>Plasmodium falciparum </it>infection. The cellular responses to the modified proteins were examined using cells from malaria-exposed infants and adults.</p> <p>Results</p> <p>Interestingly, stimulation indices (SI) for responses induced by some of the modified proteins were at least two-fold higher than those elicited by the wild-type MSP1<sub>19</sub>. A protein with four amino acid substitutions (Glu27→Tyr, Leu31→Arg, Tyr34→Ser and Glu43→Leu) had the highest stimulation index (SI up to 360) and induced large responses in 64% of the samples that had significant cellular responses to the modified proteins.</p> <p>Conclusion</p> <p>This study suggests that specific MSP1<sub>19 </sub>variants that have been engineered to improve their antigenicity for inhibitory antibodies, retain T-cell epitopes and the ability to induce cellular responses. These proteins are candidates for the development of MSP1-based malaria vaccines.</p
Chronic pancreatitis: Pediatric and adult cohorts show similarities in disease progress despite different risk factors
Objectives:
To investigate the natural history of chronic pancreatitis (CP), patients in the North American Pancreatitis Study2 (NAPS2, adults) and INternational Study group of Pediatric Pancreatitis: In search for a cuRE (INSPPIRE, pediatric) were compared.
Methods:
Demographics, risk factors, disease duration, management and outcomes of 224 children and 1,063 adults were compared using appropriate statistical tests for categorical and continuous variables.
Results:
Alcohol was a risk in 53% of adults and 1% of children (p<0.0001); tobacco in 50% of adults and 7% of children (p<0.0001). Obstructive factors were more common in children (29% vs 19% in adults, p=0.001). Genetic risk factors were found more often in children. Exocrine pancreatic insufficiency was similar (children 26% vs adult 33%, p=0.107). Diabetes was more common in adults than children (36% vs 4% respectively, p<0.0001). Median emergency room visits, hospitalizations, and missed days of work/school were similar across the cohorts. As a secondary analysis, NAPS2 subjects with childhood onset (NAPS2-CO) were compared to INSPPIRE subjects. These two cohorts were more similar than the total INSPPIRE and NAPS2 cohorts, including for genetic risk factors. The only risk factor significantly more common in the NAPS2-CO cohort compared with the INSPPIRE cohort was alcohol (9% NAPS2-CO vs 1% INSPPIRE cohorts, p=0.011).
Conclusions:
Despite disparity in age of onset, children and adults with CP exhibit similarity in demographics, CP treatment, and pain. Differences between groups in radiographic findings and diabetes prevalence may be related to differences in risk factors associated with disease and length of time of CP
- …