22 research outputs found

    Infection with 2009 H1N1 influenza virus primes for immunological memory in human nose-associated lymphoid tissue, offering cross-reactive immunity to H1N1 and avian H5N1 viruses

    Get PDF
    Influenza is a highly contagious mucosal infection in the respiratory tract. 2009 pandemic H1N1 (pH1N1) virus infection resulted in substantial morbidity and mortality in humans. Little is known on whether immunological memory develops following pH1N1 infection and whether it provides protection against other virus subtypes. Enzyme-linked immunosorbent spot assay was used to analyze hemagglutinin (HA)-specific memory B cell responses after virus antigen stimulation in nasal-associated lymphoid tissues (NALT) from children and adults. Individuals with serological evidence of previous exposure to pH1N1 showed significant cross-reactive HA-specific memory B responses to pH1N1, seasonal H1N1(sH1N1) and avian H5N1(aH5N1) viruses upon pH1N1 virus stimulation. pH1N1 virus antigen elicited stronger cross-reactive memory B cell responses than sH1N1 virus. Intriguingly, aH5N1 virus also activated cross-reactive memory responses to sH1N1 and pH1N1 HAs in those who had previous pH1N1 exposure, and that correlated well with the memory response stimulated by pH1N1 virus antigen. These memory B cell responses resulted in cross-reactive neutralizing antibodies against sH1N1, 1918 H1N1 and aH5N1viruses. 2009 pH1N1 infection appeared to have primed human host with B cell memory in NALT that offers cross-protective mucosal immunity against not only H1N1 but also aH5N1 viruses. These findings may have important implications to future vaccination strategies against influenza. It will be important to induce and/or enhance such cross-protective mucosal memory B cells

    From where did the 2009 'swine-origin' influenza A virus (H1N1) emerge?

    Get PDF
    The swine-origin influenza A (H1N1) virus that appeared in 2009 and was first found in human beings in Mexico, is a reassortant with at least three parents. Six of the genes are closest in sequence to those of H1N2 'triple-reassortant' influenza viruses isolated from pigs in North America around 1999-2000. Its other two genes are from different Eurasian 'avian-like' viruses of pigs; the NA gene is closest to H1N1 viruses isolated in Europe in 1991-1993, and the MP gene is closest to H3N2 viruses isolated in Asia in 1999-2000. The sequences of these genes do not directly reveal the immediate source of the virus as the closest were from isolates collected more than a decade before the human pandemic started. The three parents of the virus may have been assembled in one place by natural means, such as by migrating birds, however the consistent link with pig viruses suggests that human activity was involved. We discuss a published suggestion that unsampled pig herds, the intercontinental live pig trade, together with porous quarantine barriers, generated the reassortant. We contrast that suggestion with the possibility that laboratory errors involving the sharing of virus isolates and cultured cells, or perhaps vaccine production, may have been involved. Gene sequences from isolates that bridge the time and phylogenetic gap between the new virus and its parents will distinguish between these possibilities, and we suggest where they should be sought. It is important that the source of the new virus be found if we wish to avoid future pandemics rather than just trying to minimize the consequences after they have emerged. Influenza virus is a very significant zoonotic pathogen. Public confidence in influenza research, and the agribusinesses that are based on influenza's many hosts, has been eroded by several recent events involving the virus. Measures that might restore confidence include establishing a unified international administrative framework coordinating surveillance, research and commercial work with this virus, and maintaining a registry of all influenza isolates
    corecore