418 research outputs found

    Effect of Changing the Vocal Tract Shape on the Sound Production of the Recorder: An Experimental and Theoretical Study

    Full text link
    Changing the vocal tract shape is one of the techniques which can be used by the players of wind instruments to modify the quality of the sound. It has been intensely studied in the case of reed instruments but has received only little attention in the case of air-jet instruments. This paper presents a first study focused on changes in the vocal tract shape in recorder playing techniques. Measurements carried out with recorder players allow to identify techniques involving changes of the mouth shape as well as consequences on the sound. A second experiment performed in laboratory mimics the coupling with the vocal tract on an artificial mouth. The phase of the transfer function between the instrument and the mouth of the player is identified to be the relevant parameter of the coupling. It is shown to have consequences on the spectral content in terms of energy distribution among the even and odd harmonics, as well as on the stability of the first two oscillating regimes. The results gathered from the two experiments allow to develop a simplified model of sound production including the effect of changing the vocal tract shape. It is based on the modification of the jet instabilities due to the pulsating emerging jet. Two kinds of instabilities, symmetric and anti-symmetric, with respect to the stream axis, are controlled by the coupling with the vocal tract and the acoustic oscillation within the pipe, respectively. The symmetry properties of the flow are mapped on the temporal formulation of the source term, predicting a change in the even / odd harmonics energy distribution. The predictions are in qualitative agreement with the experimental observations

    Floral morphology to discriminate taxa between and within Cytisus sect. Alburnoides, sect. Spartopsis and sect. Verzinum (Genisteae, Fabaceae)

    Get PDF
    Delimitation of sections is controversial within the genus Cytisus L. (Fabaceae, Genisteae). A morphological study has been conducted on 19 taxa from sections Alburnoides, Spartopsis and Verzinum to clarify their discrimination. Thirty-five quantitative and qualitative characters were recorded on a maximum of 15 dry or living flowers per taxon. Three multiple correspondence factor analyses (MCFA) were performed on a matrix based on 22 of the 35 recorded morphological characters to (1) compare the variability within and between individuals and (2) distinguish groups among the studied taxa. MCFA showed that both flowers sampled from the same plant or different individuals could represent the morphological variability of a taxon. MCFA also clustered the 19 taxa into three groups corresponding to sections Alburnoides, Spartopsis and Verzinum as defined by Cristofolini and Troia (Taxon 44:733–746, 2006). However, floral morphology has not been sufficient to discriminate taxa within sections. A key of the three studied sections based on floral characters is given

    Rods Near Curved Surfaces and in Curved Boxes

    Full text link
    We consider an ideal gas of infinitely rigid rods near a perfectly repulsive wall, and show that the interfacial tension of a surface with rods on one side is lower when the surface bends towards the rods. Surprisingly we find that rods on both sides of surfaces also lower the energy when the surface bends. We compute the partition functions of rods confined to spherical and cylindrical open shells, and conclude that spherical shells repel rods, whereas cylindrical shells (for thickness of the shell on the order of the rod-length) attract them. The role of flexibility is investigated by considering chains composed of two rigid segments.Comment: 39 pages including figures and tables. 12 eps figures. LaTeX with REVTe

    Membranes in rod solutions: a system with spontaneously broken symmetry

    Full text link
    We consider a dilute solution of infinitely rigid rods near a curved, perfectly repulsive surface and study the contribution of the rod depletion layer to the bending elastic constants of membranes. We find that a spontaneous curvature state can be induced by exposure of BOTH sides of the membrane to a rod solution. A similar result applies for rigid disks with a diameter equal to the rod's length. We also study the confinement of rods in spherical and cylindrical repulsive shells. This helps elucidate a recent discussion on curvature effects in confined quantum mechanical and polymer systems.Comment: 10 pages, 2 figures, 1 table; submitted to PR

    Field-effect transistors assembled from functionalized carbon nanotubes

    Full text link
    We have fabricated field effect transistors from carbon nanotubes using a novel selective placement scheme. We use carbon nanotubes that are covalently bound to molecules containing hydroxamic acid functionality. The functionalized nanotubes bind strongly to basic metal oxide surfaces, but not to silicon dioxide. Upon annealing, the functionalization is removed, restoring the electronic properties of the nanotubes. The devices we have fabricated show excellent electrical characteristics.Comment: 5 pages, 6 figure

    Tactile Language for a Head-Mounted Sensory Augmentation Device

    Get PDF
    Sensory augmentation is one of the most exciting domains for research in human-machine biohybridicity. The current paper presents the design of a 2nd generation vibrotactile helmet as a sensory augmentation prototype that is being developed to help users to navigate in low visibility environments. The paper outlines a study in which the user navigates along a virtual wall whilst the position and orientation of the user’s head is tracked by a motion capture system. Vibrotactile feedback is presented according to the user’s distance from the virtual wall and their head orientation. The research builds on our previous work by developing a simplified “tactile language” for communicating navigation commands. A key goal is to identify language tokens suitable to a head-mounted tactile interface that are maximally informative, minimize information overload, intuitive, and that have the potential to become ‘experientially transparent

    Seeing ‘Where’ through the Ears: Effects of Learning-by-Doing and Long-Term Sensory Deprivation on Localization Based on Image-to-Sound Substitution

    Get PDF
    BACKGROUND: Sensory substitution devices for the blind translate inaccessible visual information into a format that intact sensory pathways can process. We here tested image-to-sound conversion-based localization of visual stimuli (LEDs and objects) in 13 blindfolded participants. METHODS AND FINDINGS: Subjects were assigned to different roles as a function of two variables: visual deprivation (blindfolded continuously (Bc) for 24 hours per day for 21 days; blindfolded for the tests only (Bt)) and system use (system not used (Sn); system used for tests only (St); system used continuously for 21 days (Sc)). The effect of learning-by-doing was assessed by comparing the performance of eight subjects (BtSt) who only used the mobile substitution device for the tests, to that of three subjects who, in addition, practiced with it for four hours daily in their normal life (BtSc and BcSc); two subjects who did not use the device at all (BtSn and BcSn) allowed assessment of its use in the tasks we employed. The impact of long-term sensory deprivation was investigated by blindfolding three of those participants throughout the three week-long experiment (BcSn, BcSn/c, and BcSc); the other ten subjects were only blindfolded during the tests (BtSn, BtSc, and the eight BtSt subjects). Expectedly, the two subjects who never used the substitution device, while fast in finding the targets, had chance accuracy, whereas subjects who used the device were markedly slower, but showed much better accuracy which improved significantly across our four testing sessions. The three subjects who freely used the device daily as well as during tests were faster and more accurate than those who used it during tests only; however, long-term blindfolding did not notably influence performance. CONCLUSIONS: Together, the results demonstrate that the device allowed blindfolded subjects to increasingly know where something was by listening, and indicate that practice in naturalistic conditions effectively improved "visual" localization performance

    A pH sensor based on electric properties of nanotubes on a glass substrate

    Get PDF
    We fabricated a pH-sensitive device on a glass substrate based on properties of carbon nanotubes. Nanotubes were immobilized specifically on chemically modified areas on a substrate followed by deposition of metallic source and drain electrodes on the area. Some nanotubes connected the source and drain electrodes. A top gate electrode was fabricated on an insulating layer of silane coupling agent on the nanotube. The device showed properties of ann-type field effect transistor when a potential was applied to the nanotube from the top gate electrode. Before fabrication of the insulating layer, the device showed that thep-type field effect transistor and the current through the source and drain electrodes depend on the buffer pH. The current increases with decreasing pH of the CNT solution. This device, which can detect pH, is applicable for use as a biosensor through modification of the CNT surface
    corecore