185 research outputs found

    Phase behavior of a nematic liquid crystal in contact with a chemically and geometrically structured substrate

    Full text link
    A nematic liquid crystal in contact with a grating surface possessing an alternating stripe pattern of locally homeotropic and planar anchoring is studied within the Frank--Oseen model. The combination of both chemical and geometrical surface pattern leads to rich phase diagrams, involving a homeotropic, a planar, and a tilted nematic texture. The effect of the groove depth and the anchoring strengths on the location and the order of phase transitions between different nematic textures is studied. A zenithally bistable nematic device is investigated by confining a nematic liquid crystal between the patterned grating surface and a flat substrate with strong homeotropic anchoring.Comment: 7 pages, 7 figure

    Effective free energy method for nematic liquid crystals in contact with structured substrates

    Full text link
    We study the phase behavior of a nematic liquid crystal confined between a flat substrate with strong anchoring and a patterned substrate whose structure and local anchoring strength we vary. By first evaluating an effective surface free energy function characterizing the patterned substrate we derive an expression for the effective free energy of the confined nematic liquid crystal. Then we determine phase diagrams involving a homogeneous state in which the nematic director is almost uniform and a hybrid aligned nematic state in which the orientation of the director varies through the cell. Direct minimization of the free energy functional were performed in order to test the predictions of the effective free energy method. We find remarkably good agreement between the phase boundaries calculated from the two approaches. In addition the effective energy method allows one to determine the energy barriers between two states in a bistable nematic device.Comment: 10 pages, 7 figures, submitte

    Layer dynamics of a freely standing smectic-A film

    Full text link
    We study the hydrodynamics of a freely-standing smectic-A film in the isothermal, incompressible limit theoretically by analyzing the linearized hydrodynamic equations of motion with proper boundary conditions. The dynamic properties for the system can be obtained from the response functions for the free surfaces. Permeation is included and its importance near the free surfaces is discussed. The hydrodynamic mode structure for the dynamics of the system is compared with that of bulk systems. We show that to describe the dynamic correlation functions for the system, in general, it is necessary to consider the smectic layer displacement uu and the velocity normal to the layers, vzv_z, together. Finally, our analysis also provides a basis for the theoretical study of the off-equilibrium dynamics of freely-standing smectic-A films.Comment: 22 pages, 4 figure

    INFLUENCE OF MODIFCATION ON THE REFINEMENT OF PRIMARY SILICON CRYSTALS IN HYPEREUTECTIC SILUMIN AlSi21CuNi

    Get PDF
    On the paper the influence of modifying micro additives on the refinement of primary silicon crystals in the hypereutectic AlSi21CuNi piston silumin have been examined. As the modifiers there were used micro additives of Phosphorus in the form of AlCu19P1.4 and CuP12 pre-alloys, sulfur in the form of CuS and iron in the powdered form. The modifying micro additives were used separately and together. Micro additions of iron were used together with phosphorus. Sulfur micro addition provided the frag-mentation of the primary silicon crystals, but not as effective as the phosphorus micro additive. The best effect of fragmentation of the primary silicon crystals was ensured by the combined addition of phosphorus in the form of AlCu19P1,4 pre alloy with a micro additive of powdered iron which re-duced the average size of the primary silicon crystals from 114 μm to 20 μm

    Fluids of platelike particles near a hard wall

    Full text link
    Fluids consisting of hard platelike particles near a hard wall are investigated using density functional theory. The density and orientational profiles as well as the surface tension and the excess coverage are determined and compared with those of a fluid of rodlike particles. Even for low densities slight orientational packing effects are found for the platelet fluid due to larger intermolecular interactions between platelets as compared with those between rods. A net depletion of platelets near the wall is exhibited by the excess coverage, whereas a change of sign of the excess coverage of hard-rod fluids is found upon increasing the bulk density.Comment: 6 pages, 9 figure

    Wetting of Curved Surfaces

    Full text link
    As a first step towards a microscopic understanding of the effective interaction between colloidal particles suspended in a solvent we study the wetting behavior of one-component fluids at spheres and fibers. We describe these phenomena within density functional theory which keeps track of the microscopic interaction potentials governing these systems. In particular we properly take into account the power-law decay of both the fluid-fluid interaction potentials and the substrate potentials. The thicknesses of the wetting films as a function of temperature and chemical potential as well as the wetting phase diagrams are determined by minimizing an effective interface potential which we obtain by applying a sharp-kink approximation to the density functional. We compare our results with previous approaches to this problem.Comment: 54 pages, 17 figures, accepted for publication in Physica

    Rods Near Curved Surfaces and in Curved Boxes

    Full text link
    We consider an ideal gas of infinitely rigid rods near a perfectly repulsive wall, and show that the interfacial tension of a surface with rods on one side is lower when the surface bends towards the rods. Surprisingly we find that rods on both sides of surfaces also lower the energy when the surface bends. We compute the partition functions of rods confined to spherical and cylindrical open shells, and conclude that spherical shells repel rods, whereas cylindrical shells (for thickness of the shell on the order of the rod-length) attract them. The role of flexibility is investigated by considering chains composed of two rigid segments.Comment: 39 pages including figures and tables. 12 eps figures. LaTeX with REVTe

    THE METHODOLOGY FOR DETECTING AND MANAGING THE ABUSE OF IT SYSTEMS

    Get PDF
    This paper focuses on the processes of dealing with security breaches which are becomingone of the most pressing problems in every organization whose systems are connected to theglobal web. The study presents the most widely used methodologies which were designed inorder to detect and react to security violations in a systematic and efficient way. Based onpresented methodologies, announced and supported by such credible organizations as SANS,NIST, CERT R or ISO, authors present their own methodology. It takes into account selectedaspects of these methodologies, with the purpose of creation a systematic and coherentapproach to the process of detecting and reacting to abuses in IT systems

    Influence of Homeotropic Anchoring Walls upon Nematic and Smectic Phases

    Full text link
    McMillan liquid crystal model sandwiched between strong homeotropic anchoring walls is studied. Phase transitions between isotropic, nematic, and smectic A phases are investigated for wide ranges of an interaction parameter and of the system thickness. It is confirmed that the anchoring walls induce an increase in transition temperatures, dissappearance of phase transitions, and an appearance of non-spontaneous nematic phase. The similarity between influence of anchoring walls and that of external fields is discussed.Comment: 5 pages, 6 figure

    Liquid crystal films on curved surfaces: An entropic sampling study

    Full text link
    The confining effect of a spherical substrate inducing anchoring (normal to the surface) of rod-like liquid crystal molecules contained in a thin film spread over it has been investigated with regard to possible changes in the nature of the isotropic-to-nematic phase transition as the sample is cooled. The focus of these Monte Carlo simulations is to study the competing effects of the homeotropic anchoring due to the surface inducing orientational ordering in the radial direction and the inherent uniaxial order promoted by the intermolecular interactions. By adopting entropic sampling procedure, we could investigate this transition with a high temperature precision, and we studied the effect of the surface anchoring strength on the phase diagram for a specifically chosen geometry. We find that there is a threshold anchoring strength of the surface below which uniaxial nematic phase results, and above which the isotropic fluid cools to a radially ordered nematic phase, besides of course expected changes in the phase transition temperature with the anchoring strength. In the vicinity of the threshold anchoring strength we observe a bistable region between these two structures, clearly brought out by the characteristics of the corresponding microstates constituting the entropic ensemble.Comment: 14 pages, 5 figure
    corecore