645 research outputs found
The Role of the Gouy Phase in the Coherent Phase Control of the Photoionization and Photodissociation of Vinyl Chloride
We demonstrate theoretically and experimentally that the Gouy phase of a
focused laser beam may be used to control the photo-induced reactions of a
polyatomic molecule. Quantum mechanical interference between one- and
three-photon excitation of vinyl chloride produces a small phase lag between
the dissociation and ionization channels on the axis of the molecular beam.
Away from the axis, the Gouy phase introduces a much larger phase lag that
agrees quantitatively with theory without any adjustable parameters.Comment: 4 pages, 4 figure
Extended Feynman Formula for the Harmonic Oscillator by the Discrete Time Method
We calculate the Feynman formula for the harmonic oscillator beyond and at
caustics by the discrete formulation of path integral. The extension has been
made by some authors, however, it is not obtained by the method which we
consider the most reliable regularization of path integral. It is shown that
this method leads to the result with, especially at caustics, more rigorous
derivation than previous.Comment: 9 page
Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers
We investigate the effects of image charges, interfacial charge discreteness,
and surface roughness on spherical electric double layers in electrolyte
solutions with divalent counter-ions in the setting of the primitive model. By
using Monte Carlo simulations and the image charge method, the zeta potential
profile and the integrated charge distribution function are computed for
varying surface charge strengths and salt concentrations. Systematic
comparisons were carried out between three distinct models for interfacial
charges: 1) SURF1 with uniform surface charges, 2) SURF2 with discrete point
charges on the interface, and 3) SURF3 with discrete interfacial charges and
finite excluded volume. By comparing the integrated charge distribution
function (ICDF) and potential profile, we argue that the potential at the
distance of one ion diameter from the macroion surface is a suitable location
to define the zeta potential. In SURF2 model, we find that image charge effects
strongly enhance charge inversion for monovalent interfacial charges, and
strongly suppress charge inversion for multivalent interfacial charges. For
SURF3, the image charge effect becomes much smaller. Finally, with image
charges in action, we find that excluded volumes (in SURF3) suppress charge
inversion for monovalent interfacial charges and enhance charge inversion for
multivalent interfacial charges. Overall, our results demonstrate that all
these aspects, i.e., image charges, interfacial charge discreteness, their
excluding volumes have significant impacts on the zeta potential, and thus the
structure of electric double layers.Comment: 11 pages, 10 figures, some errors are change
Ion-ion correlations: an improved one-component plasma correction
Based on a Debye-Hueckel approach to the one-component plasma we propose a
new free energy for incorporating ionic correlations into Poisson-Boltzmann
like theories. Its derivation employs the exclusion of the charged background
in the vicinity of the central ion, thereby yielding a thermodynamically stable
free energy density, applicable within a local density approximation. This is
an improvement over the existing Debye-Hueckel plus hole theory, which in this
situation suffers from a "structuring catastrophe". For the simple example of a
strongly charged stiff rod surrounded by its counterions we demonstrate that
the Poisson-Boltzmann free energy functional augmented by our new correction
accounts for the correlations present in this system when compared to molecular
dynamics simulations.Comment: 5 pages, 2 figures, revtex styl
Screening of Spherical Colloids beyond Mean Field -- A Local Density Functional Approach
We study the counterion distribution around a spherical macroion and its
osmotic pressure in the framework of the recently developed
Debye-H"uckel-Hole-Cavity (DHHC) theory. This is a local density functional
approach which incorporates correlations into Poisson-Boltzmann theory by
adding a free energy correction based on the One Component Plasma. We compare
the predictions for ion distribution and osmotic pressure obtained by the full
theory and by its zero temperature limit with Monte Carlo simulations. They
agree excellently for weakly developed correlations and give the correct trend
for stronger ones. In all investigated cases the DHHC theory and its
computationally simpler zero temperature limit yield better results than the
Poisson-Boltzmann theory.Comment: 10 pages, 4 figures, 2 tables, RevTeX4-styl
Diffuse-Charge Dynamics in Electrochemical Systems
The response of a model micro-electrochemical system to a time-dependent
applied voltage is analyzed. The article begins with a fresh historical review
including electrochemistry, colloidal science, and microfluidics. The model
problem consists of a symmetric binary electrolyte between parallel-plate,
blocking electrodes which suddenly apply a voltage. Compact Stern layers on the
electrodes are also taken into account. The Nernst-Planck-Poisson equations are
first linearized and solved by Laplace transforms for small voltages, and
numerical solutions are obtained for large voltages. The ``weakly nonlinear''
limit of thin double layers is then analyzed by matched asymptotic expansions
in the small parameter , where is the
screening length and the electrode separation. At leading order, the system
initially behaves like an RC circuit with a response time of
(not ), where is the ionic diffusivity, but nonlinearity
violates this common picture and introduce multiple time scales. The charging
process slows down, and neutral-salt adsorption by the diffuse part of the
double layer couples to bulk diffusion at the time scale, . In the
``strongly nonlinear'' regime (controlled by a dimensionless parameter
resembling the Dukhin number), this effect produces bulk concentration
gradients, and, at very large voltages, transient space charge. The article
concludes with an overview of more general situations involving surface
conduction, multi-component electrolytes, and Faradaic processes.Comment: 10 figs, 26 pages (double-column), 141 reference
CD5 expression promotes IL-10 production through activation of the MAPK/Erk pathway and upregulation of TRPC1 channels in B lymphocytes.
CD5 is constitutively expressed on T cells and a subset of mature normal and leukemic B cells in patients with chronic lymphocytic leukemia (CLL). Important functional properties are associated with CD5 expression in B cells, including signal transducer and activator of transcription 3 activation, IL-10 production and the promotion of B-lymphocyte survival and transformation. However, the pathway(s) by which CD5 influences the biology of B cells and its dependence on B-cell receptor (BCR) co-signaling remain unknown. In this study, we show that CD5 expression activates a number of important signaling pathways, including Erk1/2, leading to IL-10 production through a novel pathway independent of BCR engagement. This pathway is dependent on extracellular calcium (Ca2+) entry facilitated by upregulation of the transient receptor potential channel 1 (TRPC1) protein. We also show that Erk1/2 activation in a subgroup of CLL patients is associated with TRPC1 overexpression. In this subgroup of CLL patients, small inhibitory RNA (siRNA) for CD5 reduces TRPC1 expression. Furthermore, siRNAs for CD5 or for TRPC1 inhibit IL-10 production. These findings provide new insights into the role of CD5 in B-cell biology in health and disease and could pave the way for new treatment strategies for patients with B-CLL
Experimental proposal for measuring the Gouy phase of matter waves
The Schr\"odinger equation for an atomic beam predicts that it must have a
phase anomaly near the beam waist analogous to the Gouy phase of an
electromagnetic beam. We propose here a feasible experiment which allows for
the direct determination of this anomalous phase using Ramsey interferometry
with Rydberg atoms. Possible experimental limitations are discussed and shown
to be completely under control within the present day technology. We also
discuss how this finding can open the possibility to use the spatial mode
wavefunctions of atoms as q-dits, since the Gouy phase is an essential
ingredient for making rotations in the quantum states.Comment: 9 pages and 3 figure
Inference of natural selection from ancient DNA.
Evolutionary processes, including selection, can be indirectly inferred based on patterns of genomic variation among contemporary populations or species. However, this often requires unrealistic assumptions of ancestral demography and selective regimes. Sequencing ancient DNA from temporally spaced samples can inform about past selection processes, as time series data allow direct quantification of population parameters collected before, during, and after genetic changes driven by selection. In this Comment and Opinion, we advocate for the inclusion of temporal sampling and the generation of paleogenomic datasets in evolutionary biology, and highlight some of the recent advances that have yet to be broadly applied by evolutionary biologists. In doing so, we consider the expected signatures of balancing, purifying, and positive selection in time series data, and detail how this can advance our understanding of the chronology and tempo of genomic change driven by selection. However, we also recognize the limitations of such data, which can suffer from postmortem damage, fragmentation, low coverage, and typically low sample size. We therefore highlight the many assumptions and considerations associated with analyzing paleogenomic data and the assumptions associated with analytical methods
- âŠ