334 research outputs found
The scientific thought of Salvador Reguant
Depto. de Geodinámica, Estratigrafía y PaleontologíaFac. de Ciencias GeológicasTRUEpu
Probing the Early Evolution of Young High-Mass Stars
Near-infrared imaging surveys of high-mass star-forming regions reveal an
amazingly complex interplay between star formation and the environment
(Churchwell et al. 2006; Alvarez et al. 2004). By means of near-IR spectroscopy
the embedded massive young stars can be characterized and placed in the context
of their birth site. However, so far spectroscopic surveys have been hopelessly
incomplete, hampering any systematic study of these very young massive stars.
New integral field instrumentation available at ESO has opened the possibility
to take a huge step forward by obtaining a full spectral inventory of the
youngest massive stellar populations in star-forming regions currently
accessible. Simultaneously, the analysis of the extended emission allows the
characterization of the environmental conditions. The Formation and Early
Evolution of Massive Stars (FEMS) collaboration aims at setting up a large
observing campaign to obtain a full census of the stellar content, ionized
material, outflows and PDR's over a sample of regions that covers a large
parameter space. Complementary radio, mm and infrared observations will be used
for the characterization of the deeply embedded population. For the first eight
regions we have obtained 40 hours of SINFONI observations. In this
contribution, we present the first results on three regions that illustrate the
potential of this strategy.Comment: To appear in ASP Conf. Proceedings of "Massive Star Formation:
Observations confront Theory", H. Beuther et al. (eds.), held in Heidelberg,
September 200
Protective efficacy of an RBD-based Middle East respiratory syndrome coronavirus (MERS-CoV) particle vaccine in llamas
Ongoing outbreaks of Middle East respiratory syndrome coronavirus (MERS-CoV) continue posing a global health threat. Vaccination of livestock reservoir species is a recommended strategy to prevent spread of MERS-CoV among animals and potential spillover to humans. Using a direct-contact llama challenge model that mimics naturally occurring viral transmission, we tested the efficacy of a multimeric receptor binding domain (RBD) particle-display based vaccine candidate. While MERS-CoV was transmitted to naive animals exposed to virus-inoculated llamas, immunization induced robust virus-neutralizing antibody responses and prevented transmission in 1/3 vaccinated, in-contact animals. Our exploratory study supports further improvement of the RBD-based vaccine to prevent zoonotic spillover of MERS-CoV
Herschel Observations of the W43 "mini-starburst"
Aims: To explore the infrared and radio properties of one of the closest
Galactic starburst regions. Methods: Images obtained with the Herschel Space
Observatory at wavelengths of 70, 160, 250, 350, and 500 microns using the PACS
and SPIRE arrays are analyzed and compared with radio continuum VLA data and 8
micron images from the Spitzer Space Telescope. The morphology of the
far-infrared emission is combined with radial velocity measurements of
millimeter and centimeter wavelength transitions to identify features likely to
be associated with the W43 complex. Results: The W43 star-forming complex is
resolved into a dense cluster of protostars, infrared dark clouds, and ridges
of warm dust heated by massive stars. The 4 brightest compact sources with L >
1.5 x 10^4 Lsun embedded within the Z-shaped ridge of bright dust emission in
W43 remain single at 4" (0.1 pc) resolution. These objects, likely to be
massive protostars or compact clusters in early stages of evolution are
embedded in clumps with masses of 10^3 to 10^4 Msun, but contribute only 2% to
the 3.6 x 10^6 Lsun far-IR luminosity of W43 measured in a 16 by 16 pc box. The
total mass of gas derived from the far-IR dust emission inside this region is
~10^6 Msun. Cometary dust clouds, compact 6 cm radio sources, and warm dust
mark the locations of older populations of massive stars. Energy release has
created a cavity blowing-out below the Galactic plane. Compression of molecular
gas in the plane by the older HII region near G30.684-0.260 and the bipolar
structure of the resulting younger W43 HII region may have triggered the
current mini-star burst.Comment: 5 pages, 3 figures, accepted for A&A Special Issu
Protective efficacy of an RBD-based Middle East respiratory syndrome coronavirus (MERS-CoV) particle vaccine in llamas
Ongoing outbreaks of Middle East respiratory syndrome coronavirus (MERS-CoV) continue posing a global health threat. Vaccination of livestock reservoir species is a recommended strategy to prevent spread of MERS-CoV among animals and potential spillover to humans. Using a direct-contact llama challenge model that mimics naturally occurring viral transmission, we tested the efficacy of a multimeric receptor binding domain (RBD) particle-display based vaccine candidate. While MERS-CoV was transmitted to naïve animals exposed to virus-inoculated llamas, immunization induced robust virus-neutralizing antibody responses and prevented transmission in 1/3 vaccinated, in-contact animals. Our exploratory study supports further improvement of the RBD-based vaccine to prevent zoonotic spillover of MERS-CoV
Phase 1b/2a study of galunisertib, a small molecule inhibitor of transforming growth factor-beta receptor I, in combination with standard temozolomide-based radiochemotherapy in patients with newly diagnosed malignant glioma
Altres ajuts: This trial was funded by Eli Lilly and Company.The online version of this article contains supplementary material, which is available to authorized users
ALMA Observations of Asteroid 3 Juno at 60 Kilometer Resolution
We present Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm
continuum images of the asteroid 3 Juno obtained with an angular resolution of
0.042 arcseconds (60 km at 1.97 AU). The data were obtained over a single 4.4
hr interval, which covers 60% of the 7.2 hr rotation period, approximately
centered on local transit. A sequence of ten consecutive images reveals
continuous changes in the asteroid's profile and apparent shape, in good
agreement with the sky projection of the three-dimensional model of the
Database of Asteroid Models from Inversion Techniques. We measure a geometric
mean diameter of 259pm4 km, in good agreement with past estimates from a
variety of techniques and wavelengths. Due to the viewing angle and inclination
of the rotational pole, the southern hemisphere dominates all of the images.
The median peak brightness temperature is 215pm13 K, while the median over the
whole surface is 197pm15 K. With the unprecedented resolution of ALMA, we find
that the brightness temperature varies across the surface with higher values
correlated to the subsolar point and afternoon areas, and lower values beyond
the evening terminator. The dominance of the subsolar point is accentuated in
the final four images, suggesting a reduction in the thermal inertia of the
regolith at the corresponding longitudes, which are possibly correlated to the
location of the putative large impact crater. These results demonstrate ALMA's
potential to resolve thermal emission from the surface of main belt asteroids,
and to measure accurately their position, geometric shape, rotational period,
and soil characteristics.Comment: 8 pages, 3 figures, 2 tables, accepted for publication in the
Astrophysical Journal Letter
First Results from High Angular Resolution ALMA Observations Toward the HL Tau Region
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations
from the 2014 Long Baseline Campaign in dust continuum and spectral line
emission from the HL Tau region. The continuum images at wavelengths of 2.9,
1.3, and 0.87 mm have unprecedented angular resolutions of 0.075 arcseconds (10
AU) to 0.025 arcseconds (3.5 AU), revealing an astonishing level of detail in
the circumstellar disk surrounding the young solar analogue HL Tau, with a
pattern of bright and dark rings observed at all wavelengths. By fitting
ellipses to the most distinct rings, we measure precise values for the disk
inclination (46.72pm0.05 degrees) and position angle (+138.02pm0.07 degrees).
We obtain a high-fidelity image of the 1.0 mm spectral index (), which
ranges from in the optically-thick central peak and two
brightest rings, increasing to 2.3-3.0 in the dark rings. The dark rings are
not devoid of emission, we estimate a grain emissivity index of 0.8 for the
innermost dark ring and lower for subsequent dark rings, consistent with some
degree of grain growth and evolution. Additional clues that the rings arise
from planet formation include an increase in their central offsets with radius
and the presence of numerous orbital resonances. At a resolution of 35 AU, we
resolve the molecular component of the disk in HCO+ (1-0) which exhibits a
pattern over LSR velocities from 2-12 km/s consistent with Keplerian motion
around a ~1.3 solar mass star, although complicated by absorption at low
blue-shifted velocities. We also serendipitously detect and resolve the nearby
protostars XZ Tau (A/B) and LkHa358 at 2.9 mm.Comment: 11 pages, 5 figures, 2 tables, accepted for publication in the
Astrophysical Journal Letter
- …