192 research outputs found

    The Maternal-Effect Gene cellular island Encodes Aurora B Kinase and Is Essential for Furrow Formation in the Early Zebrafish Embryo

    Get PDF
    Females homozygous for a mutation in cellular island (cei) produce embryos with defects in cytokinesis during early development. Analysis of the cytoskeletal events associated with furrow formation reveal that these defects include a general delay in furrow initiation as well as a complete failure to form furrow-associated structures in distal regions of the blastodisc. A linkage mapping-based candidate gene approach, including transgenic rescue, shows that cei encodes the zebrafish Aurora B kinase homologue. Genetic complementation analysis between the cei mutation and aurB zygotic lethal mutations corroborate gene assignment and reveal a complex nature of the maternal-effect cei allele, which appears to preferentially affect a function important for cytokinesis in the early blastomeres. Surprisingly, in cei mutant embryos a short yet otherwise normal furrow forms in the center of the blastodisc. Furrow formation is absent throughout the width of the blastodisc in cei mutant embryos additionally mutant for futile cycle, which lack a spindle apparatus, showing that the residual furrow signal present in cei mutants is derived from the mitotic spindle. Our analysis suggests that partially redundant signals derived from the spindle and astral apparatus mediate furrow formation in medial and distal regions of the early embryonic blastomeres, respectively, possibly as a spatial specialization to achieve furrow formation in these large cells. In addition, our data also suggest a role for Cei/AurB function in the reorganization of the furrow-associated microtubules in both early cleavage- and somite-stage embryos. In accordance with the requirement for cei/aurB in furrow induction in the early cleavage embryo, germ plasm recruitment to the forming furrow is also affected in embryos lacking normal cei/aurB function

    The subtropical nutrient spiral

    Get PDF
    Author Posting. © American Geophysical Union, 2003. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 17 (2003): 1110, doi:10.1029/2003GB002085.We present an extended series of observations and more comprehensive analysis of a tracer-based measure of new production in the Sargasso Sea near Bermuda using the 3He flux gauge technique. The estimated annually averaged nitrate flux of 0.84 ± 0.26 mol m−2 yr−1 constitutes only that nitrate physically transported to the euphotic zone, not nitrogen from biological sources (e.g., nitrogen fixation or zooplankton migration). We show that the flux estimate is quantitatively consistent with other observations, including decade timescale evolution of the 3H + 3He inventory in the main thermocline and export production estimates. However, we argue that the flux cannot be supplied in the long term by local diapycnal or isopycnal processes. These considerations lead us to propose a three-dimensional pathway whereby nutrients remineralized within the main thermocline are returned to the seasonally accessible layers within the subtropical gyre. We describe this mechanism, which we call “the nutrient spiral,” as a sequence of steps where (1) nutrient-rich thermocline waters are entrained into the Gulf Stream, (2) enhanced diapycnal mixing moves nutrients upward onto lighter densities, (3) detrainment and enhanced isopycnal mixing injects these waters into the seasonally accessible layer of the gyre recirculation region, and (4) the nutrients become available to biota via eddy heaving and wintertime convection. The spiral is closed when nutrients are utilized, exported, and then remineralized within the thermocline. We present evidence regarding the characteristics of the spiral and discuss some implications of its operation within the biogeochemical cycle of the subtropical ocean.This work was supported by grants from the National Science Foundation (OCE-0221247) and NSF/ONR NOPP (N000140210370)

    Apoptosis of Fashigh CD4+ synovial T cells by borrelia-reactive Fas-ligand(high) gamma delta T cells in Lyme arthritis

    Get PDF
    The function of the minor subset of T lymphocytes bearing the gamma delta T cell antigen receptor is uncertain. Although some gamma delta T cells react to microbial products, responsiveness has only rarely been demonstrated toward a bacterial antigen from a naturally occurring human infection. Synovial fluid lymphocytes from patients with Lyme arthritis contain a large proportion of gamma delta cells that proliferate in response to the causative spirochete, Borrelia burgdorferi. Furthermore, synovial gamma delta T cell clones express elevated and sustained levels of the ligand for Fas (APO-1, CD95) compared to alpha beta T cells, and induce apoptosis of Fashigh CD4+ synovial lymphocytes. The findings suggest that gamma delta T cells contribute to defense in human infections, as well as manifest an immunoregulatory function at inflammatory sites by a Fas-dependent process

    The influence of Southern Ocean winds on the North Atlantic carbon sink

    Get PDF
    Observed and predicted increases in Southern Ocean winds are thought to upwell deep ocean carbon and increase atmospheric CO2. However, Southern Ocean dynamics affect biogeochemistry and circulation pathways on a global scale. Using idealized Massachusetts Institute of Technology General Circulation Model (MITgcm) simulations, we demonstrate that an increase in Southern Ocean winds reduces the carbon sink in the North Atlantic subpolar gyre. The increase in atmospheric CO2 due to the reduction of the North Atlantic carbon sink is shown to be of the same magnitude as the increase in atmospheric CO2 due to Southern Ocean outgassing. The mechanism can be described as follows: The increase in Southern Ocean winds leads to an increase in upper ocean northward nutrient transport. Biological productivity is therefore enhanced in the tropics, which alters the chemistry of the subthermocline waters that are ultimately upwelled in the subpolar gyre. The results demonstrate the influence of Southern Ocean winds on the North Atlantic carbon sink and show that the effect of Southern Ocean winds on atmospheric CO2 is likely twice as large as previously thought in past, present, and future climates

    Genes of Both Parental Origins Are Differentially Involved in Early Embryogenesis of a Tobacco Interspecies Hybrid

    Get PDF
    BACKGROUND: In animals, early embryonic development is largely dependent on maternal transcripts synthesized during gametogenesis. However, in higher plants, the extent of maternal control over zygote development and early embryogenesis is not fully understood yet. Nothing is known about the activity of the parental genomes during seed formation of interspecies hybrids. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report that an interspecies hybridization system between SR1 (Nicotiana tabacum) and Hamayan (N. rustica) has been successfully established. Based on the system we selected 58 genes that have polymorphic sites between SR1 and Hamayan, and analyzed the allele-specific expression of 28 genes in their hybrid zygotes (Hamayan x SR1). Finally the allele-specific expressions of 8 genes in hybrid zygotes were repeatedly confirmed. Among them, 4 genes were of paternal origin, 1 gene was of maternal origin and 3 genes were of biparental origin. These results revealed obvious biparental involvement and differentially contribution of parental-origin genes to zygote development in the interspecies hybrid. We further detected the expression pattern of the genes at 8-celled embryo stage found that the involvement of the parental-origin genes may change at different stages of embryogenesis. CONCLUSIONS/SIGNIFICANCE: We reveal that genes of both parental origins are differentially involved in early embryogenesis of a tobacco interspecies hybrid and functions in a developmental stage-dependent manner. This finding may open a window to seek for the possible molecular mechanism of hybrid vigor

    The Tetraodon nigroviridis reference transcriptome: Developmental transition, length retention and microsynteny of long non-coding RNAs in a compact vertebrate genome

    Get PDF
    Pufferfish such as fugu and tetraodon carry the smallest genomes among all vertebrates and are ideal for studying genome evolution. However, comparative genomics using these species is hindered by the poor annotation of their genomes. We performed RNA sequencing during key stages of maternal to zygotic transition of Tetraodon nigroviridis and report its first developmental transcriptome. We assembled 61,033 transcripts (23,837 loci) representing 80% of the annotated gene models and 3816 novel coding transcripts from 2667 loci. We demonstrate the similarities of gene expression profiles between pufferfish and zebrafish during maternal to zygotic transition and annotated 1120 long non-coding RNAs (lncRNAs) many of which differentially expressed during development. The promoters for 60% of the assembled transcripts result validated by CAGE-seq. Despite the extreme compaction of the tetraodon genome and the dramatic loss of transposons, the length of lncRNA exons remain comparable to that of other vertebrates and a small set of lncRNAs appears enriched for transposable elements suggesting a selective pressure acting on lncRNAs length and composition. Finally, a set of lncRNAs are microsyntenic between teleost and vertebrates, which indicates potential regulatory interactions between lncRNAs and their flanking coding genes. Our work provides a fundamental molecular resource for vertebrate comparative genomics and embryogenesis studies

    cDNA Cloning and Expression Analysis of Gustavus Gene in the Oriental River Prawn Macrobrachium nipponense

    Get PDF
    The gustavus gene is required for localizing pole plasm and specifying germ cells. Research on gustavus gene expression will advance our understanding of the biological function of gustavus in animals. A cDNA encoding gustavus protein was identified and termed MnGus in the oriental river prawn Macrobrachium nipponense. Bioinformatic analyses showed that this gene encoded a protein of 262 amino acids and the protein belongs to the Spsb1 family. Real-time quantitative PCR analyses revealed that the expression level of MnGus in prawn embryos was slightly higher at the cleavage stage than at the blastula stage, and reached the maximum level during the zoea stage of embryos. The minimum level of MnGus expression occurred during the perinucleolus stage in the ovary, while the maximum was at the oil globule stage, and then the level of MnGus expression gradually decreased with the advancement of ovarian development. The expression level of MnGus in muscle was much higher than that in other tissues in mature prawn. The gustavus cDNA sequence was firstly cloned from the oriental river prawn and the pattern of gene expression was described during oocyte maturation, embryonic development, and in other tissues. The differential expression patterns of MnGus in the embryo, ovary and other somatic tissues suggest that the gustavus gene performs multiple physiological functions in the oriental river prawn

    Analyses of zebrafish and Xenopus oocyte maturation reveal conserved and diverged features of translational regulation of maternal cyclin B1 mRNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vertebrate development relies on the regulated translation of stored maternal mRNAs, but how these regulatory mechanisms may have evolved to control translational efficiency of individual mRNAs is poorly understood. We compared the translational regulation and polyadenylation of the cyclin B1 mRNA during zebrafish and <it>Xenopus </it>oocyte maturation. Polyadenylation and translational activation of cyclin B1 mRNA is well characterized during <it>Xenopus </it>oocyte maturation. Specifically, <it>Xenopus </it>cyclin B1 mRNA is polyadenylated and translationally activated during oocyte maturation by proteins that recognize the conserved AAUAAA hexanucleotide and U-rich Cytoplasmic Polyadenylation Elements (CPEs) within cyclin B1 mRNA's 3'<b>U</b>n<b>T</b>ranslated <b>R</b>egion (3'<b>UTR</b>).</p> <p>Results</p> <p>The zebrafish cyclin B1 mRNA was polyadenylated during zebrafish oocyte maturation. Furthermore, the zebrafish cyclin B1 mRNA's 3'UTR was sufficient to stimulate translation of a reporter mRNA during zebrafish oocyte maturation. This stimulation required both AAUAAA and U-rich CPE-like sequences. However, in contrast to AAUAAA, the positions and sequences of the functionally defined CPEs were poorly conserved between <it>Xenopus </it>and zebrafish cyclin B1 mRNA 3'UTRs. To determine whether these differences were relevant to translation efficiency, we analyzed the translational activity of reporter mRNAs containing either the zebrafish or <it>Xenopus </it>cyclin B1 mRNA 3'UTRs during both zebrafish and <it>Xenopus </it>oocyte maturation. The zebrafish cyclin B1 3'UTR was quantitatively less effective at stimulating polyadenylation and translation compared to the <it>Xenopus </it>cyclin B1 3'UTR during both zebrafish and <it>Xenopus </it>oocyte maturation.</p> <p>Conclusion</p> <p>Although the factors that regulate translation of maternal mRNAs are highly conserved, the target sequences and overall sequence architecture within the 3'UTR of the cyclin B1 mRNA have diverged to affect translational efficiency, perhaps to optimize levels of cyclin B1 protein required by these different species during their earliest embryonic cell divisions.</p
    corecore