147 research outputs found

    Accuracy of ocean CO2 uptake estimates at a risk by a reduction in the data collection

    Get PDF
    Observation-based quantification of ocean carbon dioxide (CO2) uptake relies on synthesis data sets such as the Surface Ocean CO2 ATlas (SOCAT). However, the data collection effort has dramatically declined and the number of annual data sets in SOCATv2023 decreased by ∼35% from 2017 to 2021. This decline has led to a 65% increase (from 0.15 to 0.25 Pg C yr−1) in the standard deviation of seven SOCAT-based air-sea CO2 flux estimates. Reducing the availability of the annual data to that in the year 2000 creates substantial bias (50%) in the long-term flux trend. The annual mean CO2 flux is insensitive to the seasonal skew of the SOCAT data and to the addition of the lower accuracy data set available in SOCAT. Our study highlights the need for sustained data collection and synthesis, to inform the Global Carbon Budget assessment, the UN-led climate negotiations, and measurement, reporting, and verification of ocean-based CO2 removal projects

    The reinvigoration of the Southern Ocean carbon sink

    Get PDF
    Several studies have suggested that the carbon sink in the Southern Ocean—the ocean’s strongest region for the uptake of anthropogenic CO2 —has weakened in recent decades. We demonstrated, on the basis of multidecadal analyses of surface ocean CO2 observations, that this weakening trend stopped around 2002, and by 2012, the Southern Ocean had regained its expected strength based on the growth of atmospheric CO2. All three Southern Ocean sectors have contributed to this reinvigoration of the carbon sink, yet differences in the processes between sectors exist, related to a tendency toward a zonally more asymmetric atmospheric circulation. The large decadal variations in the Southern Ocean carbon sink suggest a rather dynamic ocean carbon cycle that varies more in time than previously recognized

    Strengthening seasonal marine CO2 variations due to increasing atmospheric CO2

    Get PDF
    The increase of atmospheric CO2 (ref. 1) has been predicted to impact the seasonal cycle of inorganic carbon in the global ocean2,3, yet the observational evidence to verify this prediction has been missing. Here, using an observation-based product of the oceanic partial pressure of CO2 (pCO2) covering the past 34 years, we find that the winter-to-summer difference of the pCO2 has increased on average by 2.2 ± 0.4 μatm per decade from 1982 to 2015 poleward of 10° latitude. This is largely in agreement with the trend expected from thermodynamic considerations. Most of the increase stems from the seasonality of the drivers acting on an increasing oceanic pCO2 caused by the uptake of anthropogenic CO2 from the atmosphere. In the high latitudes, the concurrent ocean-acidification-induced changes in the buffer capacity of the ocean enhance this effect. This strengthening of the seasonal winter-to-summer difference pushes the global ocean towards critical thresholds earlier, inducing stress to ocean ecosystems and fisheries4. Our study provides observational evidence for this strengthening seasonal difference in the oceanic carbon cycle on a global scale, illustrating the inevitable consequences of anthropogenic CO2 emissions

    Carbon dynamics of the Weddell Gyre, Southern Ocean

    Get PDF
    The accumulation of carbon within the Weddell Gyre and its exchanges across the gyre boundaries are investigated with three recent full-depth oceanographic sections enclosing this climatically important region. The combination of carbonmeasurements with ocean circulation transport estimates from a box inverse analysis reveals that deepwater transports associated with Warm Deep Water (WDW) and Weddell Sea Deep Water dominate the gyre’s carbon budget, while a dual-cell vertical overturning circulation leads to both upwelling and the delivery of large quantities of carbon to the deep ocean. Historical sea surface pCO2 observations, interpolated using a neural network technique, confirm the net summertime sink of 0.044 to 0.058 ± 0.010 Pg C / yr derived from the inversion. However, a wintertime outgassing signal similar in size results in a statistically insignificant annual air-to-sea CO2 flux of 0.002± 0.007 Pg C / yr (mean 1998–2011) to 0.012 ± 0.024 Pg C/ yr (mean 2008–2010) to be diagnosed for the Weddell Gyre. A surface layer carbon balance, independently derived fromin situ biogeochemical measurements, reveals that freshwater inputs and biological drawdown decrease surface ocean inorganic carbon levels more than they are increased by WDW entrainment, resulting in an estimated annual carbon sink of 0.033 ± 0.021 Pg C / yr. Although relatively less efficient for carbon uptake than the global oceans, the summertime Weddell Gyre suppresses the winter outgassing signal, while its biological pump and deepwater formation act as key conduits for transporting natural and anthropogenic carbon to the deep ocean where they can reside for long time scales

    Multidecadal changes in biology influence the variability of the North Atlantic carbon sink

    Get PDF
    The North Atlantic Ocean is the most intense marine sink for anthropogenic carbon dioxide (CO2)in the world’s oceans, showing high variability and substantial changes over recent decades. However, the contribution of biology to the variability and trend of this sink is poorly understood. Here we use in situ plankton measurements, alongside observation-based sea surface CO2 data from 1982 to 2020, to investigate the biological influence on the CO2 sink. Our results demonstrate that long term variability in the CO2 sink in the North Atlantic is associated with changes in phytoplankton abundance and community structure. These data show that within the subpolar regions of the North Atlantic, phytoplankton biomass is increasing, while a decrease is observed in the subtropics, which supports model predictions of climate-driven changes in productivity. These biomass trends are synchronous with increasing temperature, changes in mixing and an increasing uptake of atmospheric CO2 in the subpolar North Atlantic. Our results highlight that phytoplankton play a significant role in the variability as well as the trends of the CO2 uptake from the atmosphere over recent decades

    Multidecadal changes in biology influence the variability of the North Atlantic carbon sink

    Get PDF
    This is the final version. Available from IOP Publishing via the DOI in this record. Data availability statement: The data that support the findings of this study are available upon reasonable request from the authors. The datasets that support the findings of this study are available through the following listed websites; the carbon observation data were obtained from the SOCAT (www.socat.info), the biological data were obtained from the CPR Survey (www.cprsurvey.org), SST data were obtained from the ICOADS (1◦ enhanced data, www.esrl. noaa.gov/psd/data/gridded/data.coads.1deg.html). The satellite derived estimate of sea surface chl-a was obtained from the OC-CCI dataset version 4.1 (esa-oceancolour-cci.org) [35]. MLD was obtained from the global ocean and sea-ice reanalysis products (ORAS5: Ocean Reanalysis System 5) prepared by the European Centre for Medium-Range Weather Forecasts (ECMWF www.ecmwf.int/node/18519) [37].The North Atlantic Ocean is the most intense marine sink for anthropogenic carbon dioxide (CO2) in the world’s oceans, showing high variability and substantial changes over recent decades. However, the contribution of biology to the variability and trend of this sink is poorly understood. Here we use in situ plankton measurements, alongside observation-based sea surface CO2 data from 1982 to 2020, to investigate the biological influence on the CO2 sink. Our results demonstrate that long term variability in the CO2 sink in the North Atlantic is associated with changes in phytoplankton abundance and community structure. These data show that within the subpolar regions of the North Atlantic, phytoplankton biomass is increasing, while a decrease is observed in the subtropics, which supports model predictions of climate-driven changes in productivity. These biomass trends are synchronous with increasing temperature, changes in mixing and an increasing uptake of atmospheric CO2 in the subpolar North Atlantic. Our results highlight that phytoplankton play a significant role in the variability as well as the trends of the CO2 uptake from the atmosphere over recent decades.Natural Environment Research CouncilNatural Environment Research CouncilMax Planck Society for the Advancement of Scienc

    Recent variability of the global ocean carbon sink

    Get PDF
    We present a new observation-based estimate of the global oceanic carbon dioxide (CO2) sink and its temporal variation on a monthly basis from 1998 through 2011 and at a spatial resolution of 1×1. This sink estimate rests upon a neural network-based mapping of global surface ocean observations of the partial pressure of CO2 (pCO2) from the Surface Ocean CO2 Atlas database. The resulting pCO2 has small biases when evaluated against independent observations in the different ocean basins, but larger randomly distributed differences exist particularly in high latitudes. The seasonal climatology of our neural network-based product agrees overall well with the Takahashi et al. (2009) climatology, although our product produces a stronger seasonal cycle at high latitudes. From our global pCO2 product, we compute a mean net global ocean (excluding the Arctic Ocean and coastal regions) CO2 uptake flux of −1.42 ± 0.53 Pg C yr−1, which is in good agreement with ocean inversion-based estimates. Our data indicate a moderate level of interannual variability in the ocean carbon sink (±0.12 Pg C yr−1, 1𝜎) from 1998 through 2011, mostly originating from the equatorial Pacific Ocean, and associated with the El Nino–Southern Oscillation. Accounting for steady state riverine and Arctic Ocean carbon fluxes our estimate further implies a mean anthropogenic CO2 uptake of −1.99 ± 0.59 Pg C yr−1 over the analysis period. From this estimate plus the most recent estimates for fossil fuel emissions and atmospheric CO2 accumulation, we infer a mean global land sink of −2.82 ± 0.85 Pg C yr−1 over the 1998 through 2011 period with strong interannual variation

    Update on the Temperature Corrections of Global Air-Sea CO2 Flux Estimates

    Get PDF
    The oceans are a major carbon sink. Sea surface temperature (SST) is a crucial variable in the calculation of the air-sea carbon dioxide (CO2) flux from surface observations. Any bias in the SST or any upper ocean vertical temperature gradient (e.g., the cool skin effect) potentially generates a bias in the CO2 flux estimates. A recent study suggested a substantial increase (∼50% or ∼0.9 Pg C yr−1) in the global ocean CO2 uptake due to this temperature effect. Here, we use a gold standard buoy SST data set as the reference to assess the accuracy of insitu SST used for flux calculation. A physical model is then used to estimate the cool skin effect, which varies with latitude. The bias-corrected SST (assessed by buoy SST) coupled with the physics-based cool skin correction increases the average ocean CO2 uptake by ∼35% (0.6 Pg C yr−1) from 1982 to 2020, which is substantially smaller than the previous correction. After these temperature considerations, we estimate an average net ocean CO2 uptake of 2.2 ± 0.4 Pg C yr−1 from 1994 to 2007 based on an ensemble of surface observation-based flux estimates, in line with the independent interior ocean carbon storage estimate corrected for the river induced natural outgassing flux (2.1 ± 0.4 Pg C yr−1)

    Attribution of space-time variability in global-ocean dissolved inorganic Carbon

    Get PDF
    The inventory and variability of oceanic dissolved inorganic carbon (DIC) is driven by the interplay of physical, chemical, and biological processes. Quantifying the spatiotemporal variability of these drivers is crucial for a mechanistic understanding of the ocean carbon sink and its future trajectory. Here, we use the Estimating the Circulation and Climate of the Ocean-Darwin ocean biogeochemistry state estimate to generate a global-ocean, data-constrained DIC budget and investigate how spatial and seasonal-to-interannual variability in three-dimensional circulation, air-sea CO2 flux, and biological processes have modulated the ocean sink for 1995–2018. Our results demonstrate substantial compensation between budget terms, resulting in distinct upper-ocean carbon regimes. For example, boundary current regions have strong contributions from vertical diffusion while equatorial regions exhibit compensation between upwelling and biological processes. When integrated across the full ocean depth, the 24-year DIC mass increase of 64 Pg C (2.7 Pg C year−1) primarily tracks the anthropogenic CO2 growth rate, with biological processes providing a small contribution of 2 (1.4 Pg C). In the upper 100 m, which stores roughly 13 (8.1 Pg C) of the global increase, we find that circulation provides the largest DIC gain (6.3 Pg C year−1) and biological processes are the largest loss (8.6 Pg C year−1). Interannual variability is dominated by vertical advection in equatorial regions, with the 1997–1998 El Niño-Southern Oscillation causing the largest year-to-year change in upper-ocean DIC (2.1 Pg C). Our results provide a novel, data-constrained framework for an improved mechanistic understanding of natural and anthropogenic perturbations to the ocean sink. © 2022. The Authors
    corecore