31 research outputs found

    Feasibility of rapid gravity filtration and membrane ultrafiltration for the removal of microplastics and microlitter in sewage and wastewater from plastic industry

    Get PDF
    [EN] Wastewater treatment plants (WWTPs) act as barriers in reducing uncontrolled microplastic and microlitter (MP-ML) emissions from both urban and industrial wastewaters. Despite removing most of the MP-ML, large quantities of this waste still enter the environment through WWTP effluents, which means further post-treatment technologies are needed. This study contains a technical evaluation of MP-ML removal from urban wastewater (UWW) and from the wastewater from the recycling plastic industry (PIWW) using two different pilot-scale post-treatment systems: rapid gravity filtration (RGF) and ultrafiltration (UF) membranes. The MP-ML mass concentrations contained in UWW and PIWW were measured by a simplified method adapted for the long-term monitoring of WWTP operations. The method was validated on standard samples. Despite the RGF system consumed less energy than UF treating UWW (0.097 kWh·m-3 and 0.156 kWh·m-3, respectively), RGF was not efficient enough to properly decrease the risk of MP-ML emissions (39.5 ± 34.6% of MP-ML removal). With respect to PIWW, the energy consumption of the UF plant decreased up to 0.059 kWh·m-3. The combination of RGF and UF technologies was expected to reduce membrane fouling but it did not show significant differences in the mid-term operation.This research work was supported by the Agència Valenciana de la Innovació (AVI) of the Generalitat Valenciana (Spain) through the Project MICROPLAST (INEST00/19/058), which is gratefully acknowledged. It was also supported by the Entitat Pública de Sanejament d'Aigües Residuals de la Comunitat Valenciana (EPSAR) and the Camp de Turia Mancommunity. First author J. Gonzalez-Camejo is also grateful to the Spanish Ministry of Universities and the NextGenerationEU for their support via a Margarita Salas Grant.González-Camejo, J.; Morales, A.; Peña-Lamas, J.; Lafita, C.; Enguídanos, S.; Seco, A.; Martí, N. (2023). Feasibility of rapid gravity filtration and membrane ultrafiltration for the removal of microplastics and microlitter in sewage and wastewater from plastic industry. Journal of Water Process Engineering. 51. https://doi.org/10.1016/j.jwpe.2022.1034525

    Periscope Proteins are variable-length regulators of bacterial cell surface interactions

    Get PDF
    Changes at the cell surface enable bacteria to survive in dynamic environments, such as diverse niches of the human host. Here, we reveal “Periscope Proteins” as a widespread mechanism of bacterial surface alteration mediated through protein length variation. Tandem arrays of highly similar folded domains can form an elongated rod-like structure; thus, variation in the number of domains determines how far an N-terminal host ligand binding domain projects from the cell surface. Supported by newly available long-read genome sequencing data, we propose that this class could contain over 50 distinct proteins, including those implicated in host colonization and biofilm formation by human pathogens. In large multidomain proteins, sequence divergence between adjacent domains appears to reduce interdomain misfolding. Periscope Proteins break this “rule,” suggesting that their length variability plays an important role in regulating bacterial interactions with host surfaces, other bacteria, and the immune system

    Anaerobic degradation of 2-propanol: Laboratory and pilot-scale studies

    Get PDF
    The anaerobic degradation of 2-propanol, an important industrial solvent, was scaled-up from batch assays to a pilot expanded granular sludge bed (EGSB) reactor at 25 °C. Batch studies indicated that 2-propanol followed Haldane kinetics, with a maximum rate at 10 g COD L−1. Concentrations as high as 25 g COD L−1 did not inhibit the degradation of ethanol, a common co-solvent. Similar specific methanogenic activities (SMA) were obtained for water-solvent and water-brewery sludges (88 and 77 ml CH4 g-VS−1 d−1 at 5 g COD L−1). Continuous degradation showed a lag-phase of three weeks with water-brewery sludge. Increases in 2-propanol load from 0.05 to 0.18 kg COD kg-VS−1 d−1 caused a shift from the consumption of soluble matter to methane production, indicating polyhydroxybutyrates (PHB) accumulation. Conversely, smooth increases of up to 0.29 kg COD kg-VS−1 d−1 allowed 2-propanol degradation without PHB accumulation. The slowdown rate of 2-propanol-oxidizer and acetate-utilizing methanogen bacteria below 20 °C adversely impacted both removal and CH4 yield

    Anaerobic removal of 1-methoxy-2-propanol under ambient temperature in an EGSB reactor

    Get PDF
    Two laboratory-scale expanded granular sludge bed (EGSB) reactors were operated at 18 and 25 C, respectively, for the treatment of synthetic wastewater composed of ethanol and 1-methoxy-2-propanol (M2P) in a mass ratio of 4:1. Reactors were operated first with continuous wastewater supply and after with discontinuous substrate supply (5 days a week, 16 h a day) to simulate shift working conditions. Under continuous wastewater supply chemical oxygen demand (COD), removal efficiency higher than 95 % was achieved at the end of the trial applying organic loading rates (OLR) of 29 and 43 kg COD m-3 day-1 at 18 and 25 C; thus, corresponding to M2P OLR of 6.4 and 9.3 kg COD m-3 day-1, respectively. During intermittent supply of substrate, good performance was recorded at both temperatures with an OLR of 30 kg COD m-3 day-1 (M2P OLR of 6.6 kg COD m-3 day-1). After 56 h without substrate supply, a decline in methane yield of 15¿30 % was observed due to the deactivation of the biomass. Specific methanogenic activity (SMA) assays were carried out at the end of the experiments. SMA values using 1-methoxy-2-propanol as substrate were 24.3 and 7.8 ml CH4 gVSS-1 day-1 at 25 C and at 18 C, respectively. This is the first attempt to investigate the removal of 1-methoxy-2-propanol by EGSB reactors

    Granulation and microbial community dynamics in the chitosan-supplemented anaerobic treatment of wastewater polluted with organic solvents

    Get PDF
    The effect of chitosan on the development of granular sludge in upflow anaerobic sludge blanket reactors (UASB) when treating wastewater polluted with the organic solvents ethanol, ethyl acetate, and 1-ethoxy-2-propanol was evaluated. Three UASB reactors were operated for 219 days at ambient temperature with an organic loading rate (OLR) of between 0.3 kg COD m−3 d−1 and 20 kg COD m−3 d−1. One reactor was operated without the addition of chitosan, while the other two were operated with the addition of chitosan doses of 2.4 mg gVSS−1 two times. The three reactors were all able to treat the OLR tested with COD removal efficiencies greater than 90%. However, the time required to reach stable operation was considerably reduced in the chitosan-assisted reactors. The development of granules in the reactors with chitosan was accelerated and granules larger than 2000 μm were only observed in these reactors. In addition, these granules exhibited better physicochemical characteristics: the mean particle diameter (540 and 613 μm) was approximately two times greater than in the control reactor (300 μm), and the settling velocities exceeded 35 m h−1. The extracellular polymeric substances (EPS) in the reactors with the chitosan was found to be higher than in the control reactor. The protein-EPS content has been correlated with the granule size. The analyses of the microbial communities, performed through denaturing gradient gel electrophoresis and high-throughput sequencing, revealed that the syntrophic microorganisms belonging to genus Geobacter and the hydrogenotrophic methanogen Methanocorpusculum labreanum were predominant in the granules. Other methanogens like Methanosaeta species were found earlier in the chitosan-assisted reactors than in the control reactor

    p21 as a Transcriptional Co-Repressor of S-Phase and Mitotic Control Genes

    Get PDF
    It has been previously described that p21 functions not only as a CDK inhibitor but also as a transcriptional co-repressor in some systems. To investigate the roles of p21 in transcriptional control, we studied the gene expression changes in two human cell systems. Using a human leukemia cell line (K562) with inducible p21 expression and human primary keratinocytes with adenoviral-mediated p21 expression, we carried out microarray-based gene expression profiling. We found that p21 rapidly and strongly repressed the mRNA levels of a number of genes involved in cell cycle and mitosis. One of the most strongly down-regulated genes was CCNE2 (cyclin E2 gene). Mutational analysis in K562 cells showed that the N-terminal region of p21 is required for repression of gene expression of CCNE2 and other genes. Chromatin immunoprecipitation assays indicated that p21 was bound to human CCNE2 and other p21-repressed genes gene in the vicinity of the transcription start site. Moreover, p21 repressed human CCNE2 promoter-luciferase constructs in K562 cells. Bioinformatic analysis revealed that the CDE motif is present in most of the promoters of the p21-regulated genes. Altogether, the results suggest that p21 exerts a repressive effect on a relevant number of genes controlling S phase and mitosis. Thus, p21 activity as inhibitor of cell cycle progression would be mediated not only by the inhibition of CDKs but also by the transcriptional down-regulation of key genes

    ODZ1 allows glioblastoma to sustain invasiveness through a Myc-dependent transcriptional upregulation of RhoA

    Get PDF
    Long-term survival remains low for most patients with glioblastoma (GBM), which reveals the need for markers of disease outcome and novel therapeutic targets. We describe that ODZ1 (also known as TENM1), a type II transmembrane protein involved in fetal brain development, plays a crucial role in the invasion of GBM cells. Differentiation of glioblastoma stem-like cells drives the nuclear translocation of an intracellular fragment of ODZ1 through proteolytic cleavage by signal peptide peptidase-like 2a. The intracellular fragment of ODZ1 promotes cytoskeletal remodelling of GBM cells and invasion of the surrounding environment both in vitro and in vivo. Absence of ODZ1 by gene deletion or downregulation of ODZ1 by small interfering RNAs drastically reduces the invasive capacity of GBM cells. This activity is mediated by an ODZ1-triggered transcriptional pathway, through the E-box binding Myc protein, that promotes the expression and activation of Ras homolog family member A (RhoA) and subsequent activation of Rho-associated, coiled-coil containing protein kinase (ROCK). Overexpression of ODZ1 in GBM cells reduced survival of xenografted mice. Consistently, analysis of 122 GBM tumour samples revealed that the number of ODZ1-positive cells inversely correlated with overall and progression-free survival. Our findings establish a novel marker of invading GBM cells and consequently a potential marker of disease progression and a therapeutic target in GBM

    Osteoporosis secundarias

    No full text
    Se denomina osteoporosis secundaria a aquella que es causada por patologías o medicaciones, distintas a la pérdida ósea explicable por la etapa postmenopáusica o envejecimiento. Las posibles patologías que pueden condicionar la pérdida de masa ósea son muy variadas: endocrinológicas, digestivas, genéticas, hematológicas, reumáticas, post-transplante, farmacológicas y un amplio grupo misceláneo. En el artículo se revisan esencialmente las causas endocrinológicas, con especial énfasis en los aspectos más controvertidos en la actualidad, seguidos de una aproximación clínica para el diagnóstico sistemático de estas patologías, frecuentes en los casos etiquetados inicialmente de osteoporosis primaria
    corecore