380 research outputs found

    Performances of a Newly High Sensitive Trilayer F/Cu/F GMI Sensor

    Full text link
    We have selected stress-annealed nanocrystalline Fe-based ribbons for ferromagnetic/copper/ferromagnetic sensors exhibiting high magneto-impedance ratio. Longitudinal magneto-impedance reaches 400% at 60 kHz and longitudinal magneto-resistance increases up to 1300% around 200 kHz.Comment: 4 pages, 6 figures, Sensors and Actuators A (in review

    Identifying the progenitors of present-day early-type galaxies in observational surveys: correcting `progenitor bias' using the Horizon-AGN simulation

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.As endpoints of the hierarchical mass-assembly process, the stellar populations of local earlytype galaxies encode the assembly history of galaxies over cosmic time. We useHorizon-AGN, a cosmological hydrodynamical simulation, to study the merger histories of local early-type galaxies and track how the morphological mix of their progenitors evolves over time. We provide a framework for alleviating 'progenitor bias' - the bias that occurs if one uses only early-type galaxies to study the progenitor population. Early types attain their final morphology at relatively early epochs - by z ~ 1, around 60 per cent of today's early types have had their last significant merger. At all redshifts, the majority of mergers have one late-type progenitor, with late-late mergers dominating at z > 1.5 and early-early mergers becoming significant only at z < 0.5. Progenitor bias is severe at all but the lowest redshifts - e.g. at z~0.6, less than 50 per cent of the stellar mass in today's early types is actually in progenitors with early-type morphology, while, at z~ 2, studying only early types misses almost all (80 per cent) of the stellar mass that eventually ends up in local early-type systems. At high redshift, almost all massive late-type galaxies, regardless of their local environment or star formation rate, are progenitors of local early-type galaxies, as are lowermass (M* < 10 10.5 M ⊙) late-types as long as they reside in high-density environments. In this new era of large observational surveys (e.g. LSST, JWST), this study provides a framework for studying how today's early-type galaxies have been built up over cosmic time.Peer reviewe

    Massive spheroids can form in single minor mergers

    Get PDF
    Accepted for publication in MNRAS, 12 pages, 6 figuresUnderstanding how rotationally supported discs transform into dispersion-dominated spheroids is central to our comprehension of galaxy evolution. Morphological transformation is largely merger-driven. While major mergers can efficiently create spheroids, recent work has highlighted the significant role of other processes, like minor mergers, in driving morphological change. Given their rich merger histories, spheroids typically exhibit large fractions of ‘ex situ’ stellar mass, i.e. mass that is accreted, via mergers, from external objects. This is particularly true for the most massive galaxies, whose stellar masses typically cannot be attained without a large number of mergers. Here, we explore an unusual population of extremely massive (M ∗ > 10 11M) spheroids, in the Horizon-AGN simulation, which exhibit anomalously low ex situ mass fractions, indicating that they form without recourse to significant merging. These systems form in a single minor-merger event (with typical merger mass ratios of 0.11–0.33), with a specific orbital configuration, where the satellite orbit is virtually co-planar with the disc of the massive galaxy. The merger triggers a catastrophic change in morphology, over only a few hundred Myr, coupled with strong in situ star formation. While this channel produces a minority (∼5 per cent) of such galaxies, our study demonstrates that the formation of at least some of the most massive spheroids need not involve major mergers – or any significant merging at all – contrary to what is classically believed.Peer reviewedFinal Accepted Versio

    Do Moderate-Luminosity Active Galactic Nuclei Suppress Star Formation?

    Get PDF
    The growth of supermassive black holes and their host galaxies are thought to be linked, but the precise nature of this symbiotic relationship is still poorly understood. Both observations and simulations of galaxy formation suggest that the energy input from active galactic nuclei (AGN), as the central supermassive black hole accretes material and grows, heats the interstellar material and suppresses star formation. In this Letter, we show that most host galaxies of moderate-luminosity supermassive black holes in the local universe have intermediate optical colors that imply the host galaxies are transitioning from star formation to quiescence, the first time this has been shown to be true for all AGN independent of obscuration. The intermediate colors suggest that star formation in the host galaxies ceased roughly 100 Myr ago. This result indicates that either the AGN are very long-lived, accreting for more than 1 Gyr beyond the end of star formation, or there is a ~100 Myr time delay between the shutdown of star formation and detectable black hole growth. The first explanation is unlikely given current estimates for AGN lifetimes, so low-lumiosity AGN must shut down star formation before substantial black hole accretion activity is detected. The scarcity of AGN host galaxies in the blue cloud reported here challenges scenarios where significant star formation and black hole growth are coeval. Lastly, these observations also strongly support the `Unified Model' of AGN as the host galaxy colors are independent of obscuration towards the central engine.Comment: Accepted for publication in ApJ Letters. 7 pages, 4 figure

    Better age estimations using UV-optical colours: breaking the age-metallicity degeneracy

    Get PDF
    We demonstrate that the combination of GALEX UV photometry in the FUV (~1530 angstroms) and NUV (~2310 angstroms) passbands with optical photometry in the standard U,B,V,R,I filters can efficiently break the age-metallicity degeneracy. We estimate well-constrained ages, metallicities and their associated errors for 42 GCs in M31, and show that the full set of FUV,NUV,U,B,V,R,I photometry produces age estimates that are ~90 percent more constrained and metallicity estimates that are ~60 percent more constrained than those produced by using optical filters alone. The quality of the age constraints is comparable or marginally better than those achieved using a large number of spectrscopic indices.Comment: Published in MNRAS (2007), 381, L74 (doi: 10.1111/j.1745-3933.2007.00370.x

    The UV colours of high-redshift early-type galaxies: evidence for recent star formation and stellar mass assembly over the last 8 billion years

    Get PDF
    We combine deep UBVRIzJK photometry from the Multiwavelength Survey by Yale-Chile (MUSYC) with redshifts from the COMBO-17 survey to perform a large-scale study of the rest-frame ultraviolet (UV) properties of 674 high-redshift (0.5<z<1) early-type galaxies, drawn from the Extended Chandra Deep Field South (E-CDFS). Galaxy morphologies are determined through visual inspection of Hubble Space Telescope (HST) images taken from the GEMS survey. We harness the sensitivity of the UV to young (<1 Gyr old) stars to quantify the recent star formation history of early-type galaxies across a range of luminosities (-23.5 < M(V) < -18). Comparisons to simple stellar populations forming at high redshift indicate that only ~1.1 percent of early-types in this sample are consistent with purely passive ageing since z=2. Parametrising the recent star formation (RSF) in terms of the mass fraction of stars less than a Gyr old, we find that the early-type population as a whole shows a typical RSF between 5 and 13% in the redshift range 0.5<z<1. Early-types on the UV red sequence show RSF values less than 5% while the reddest early-types are virtually quiescent with RSF values of ~1%. We find compelling evidence that early-types of all luminosities form stars over the lifetime of the Universe, although the bulk of their star formation is already complete at high redshift. This tail-end of star formation is measurable and not negligible, with luminous (-23<M(V)<-20.5) early-types potentially forming 10-15% of their mass since z=1, with their less luminous (M(V)>-20.5) counterparts potentially forming 30-60 percent of their mass in the same redshift range. (abridged)Comment: Submitted to MNRA

    AGN Jet-induced Feedback in Galaxies. II. Galaxy colours from a multicloud simulation

    Get PDF
    We study the feedback from an AGN on stellar formation within its host galaxy, mainly using one high resolution numerical simulation of the jet propagation within the interstellar medium of an early-type galaxy. In particular, we show that in a realistic simulation where the jet propagates into a two-phase ISM, star formation can initially be slightly enhanced and then, on timescales of few million years, rapidly quenched, as a consequence both of the high temperatures attained and of the reduction of cloud mass (mainly due to Kelvin-Helmholtz instabilities). We then introduce a model of (prevalently) {\em negative} AGN feedback, where an exponentially declining star formation is quenched, on a very short time scale, at a time t_AGN, due to AGN feedback. Using the Bruzual & Charlot (2003) population synthesis model and our star formation history, we predict galaxy colours from this model and match them to a sample of nearby early-type galaxies showing signs of recent episodes of star formation (Kaviraj et al. 2007). We find that the quantity t_gal - t_AGN, where t_gal is the galaxy age, is an excellent indicator of the presence of feedback processes, and peaks significantly around t_gal - t_AGN \approx 0.85 Gyr for our sample, consistent with feedback from recent energy injection by AGNs in relatively bright (M_{B} \lsim -19) and massive nearby early-type galaxies. Galaxies that have experienced this recent feedback show an enhancement of 3 magnitudes in NUV(GALEX)-g, with respect to the unperturbed, no-feedback evolution. Hence they can be easily identified in large combined near UV-optical surveys.Comment: 18 pages, 16 figures, accepted for publication on MNRAS. This version includes revisions after the referee's repor

    The limited role of galaxy mergers in driving stellar mass growth over cosmic time

    Get PDF
    © The Author(s) 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Published by Oxford University Press on behalf of the Royal Astronomical Society.A key unresolved question is the role that galaxy mergers play in driving stellar mass growth over cosmic time. Recent observational work hints at the possibility that the overall contribution of `major' mergers (mass ratios \gtrsim1:4) to cosmic stellar mass growth may be small, because they enhance star formation rates by relatively small amounts at high redshift, when much of today's stellar mass was assembled. However, the heterogeneity and relatively small size of today's datasets, coupled with the difficulty in identifying genuine mergers, makes it challenging to empirically\textit{empirically} quantify the merger contribution to stellar mass growth. Here, we use Horizon-AGN, a cosmological hydrodynamical simulation, to comprehensively quantify the contribution of mergers to the star formation budget over the lifetime of the Universe. We show that: (1) both major and minor mergers enhance star formation to similar amounts, (2) the fraction of star formation directly attributable to merging is small at all redshifts (e.g. \sim35 and \sim20 per cent at z\sim3 and z\sim1 respectively) and (3) only \sim25 per cent of today's stellar mass is directly attributable to galaxy mergers over cosmic time. Our results suggest that smooth accretion, not merging, is the dominant driver of stellar mass growth over the lifetime of the Universe.Peer reviewedFinal Published versio

    Local analogues of high-redshift star-forming galaxies: integral field spectroscopy of green peas

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. ©: 2017 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We use integral field spectroscopy, from the SWIFT and Palm3K instruments, to perform a spatially-resolved spectroscopic analysis of four nearby highly star-forming `green pea' (GP) galaxies, that are likely analogues of star-forming systems at z~2.5-3. By studying emission-line maps in Hα\alpha, [NII]λλ\lambda \lambda6548,6584 and [SII]λ\lambdaλ\lambda6716,6731, we explore the kinematic morphology of these systems and constrain properties such as gas-phase metallicities, electron densities and gas-ionization mechanisms. Two of our GPs are rotationally-supported while the others are dispersion-dominated systems. The rotationally-supported galaxies both show evidence for recent or ongoing mergers. However, given that these systems have intact disks, these interactions are likely to have low mass ratios (i.e. minor mergers), suggesting that the minor-merger process may be partly responsible for the high SFRs seen in these GPs. Nevertheless, the fact that the other two GPs appear morphologically undisturbed suggests that mergers (including minor mergers) are not necessary for driving the high star formation rates in such galaxies. We show that the GPs are metal-poor systems (25-40 per cent of solar) and that the gas ionization is not driven by AGN in any of our systems, indicating that AGN activity is not co-eval with star formation in these starbursting galaxies.Peer reviewedFinal Published versio

    Central star formation in an early-type galaxy I~Zw~81 in the Bootes void

    Full text link
    The origin of star-formation in customarily passively evolving early-type massive galaxies is poorly understood. We present a case study of a massive galaxy, I~Zw~81, inside the Bootes void. The void galaxy is known to host an active galactic nuclei (AGN). Our detailed 2D decomposition of the surface brightness distribution in the CanadaCanada FranceFrance HawaiiHawaii TelescopeTelescope (CFHTCFHT) g- and r-bands revealed multiple structural components such as a nuclear point source, a bar, a ring, and an inner exponential disk followed by an outer low surface brightness (LSB) disk. I~Zw~81 turns out to be a disk-dominated galaxy with lenticular morphology. The modelling of the multi-wavelength spectral energy distribution (SED) shows that the galaxy is star-forming (SF), and belongs to the blue cloud. We find that the optical (g-r) color of the bar is bluer than the disks, and the far- and near-ultraviolet emission inside the galaxy observed with Ultraviolet Imaging Telescope (UVIT) onboard {\em AstroSat} is concentrated in the central few kpc region enclosing the bar. The strong bar might be playing a pivotal role in driving the gas inflow and causing SF activity in tandem with the minor merger-like interactions as evident from the deep CFHTCFHT data. The low-luminosity AGN is insufficient to quench the central SF. The results are peculiar from the standpoint of a massive barred lenticular galaxy.Comment: Accepted for publication in Ap
    corecore