541 research outputs found

    The Stellar Mass Components of Galaxies: Comparing Semi-Analytical Models with Observation

    Full text link
    We compare the stellar masses of central and satellite galaxies predicted by three independent semianalytical models with observational results obtained from a large galaxy group catalogue constructed from the Sloan Digital Sky Survey. In particular, we compare the stellar mass functions of centrals and satellites, the relation between total stellar mass and halo mass, and the conditional stellar mass functions, which specify the average number of galaxies of stellar mass M_* that reside in a halo of mass M_h. The semi-analytical models only predict the correct stellar masses of central galaxies within a limited mass range and all models fail to reproduce the sharp decline of stellar mass with decreasing halo mass observed at the low mass end. In addition, all models over-predict the number of satellite galaxies by roughly a factor of two. The predicted stellar mass in satellite galaxies can be made to match the data by assuming that a significant fraction of satellite galaxies are tidally stripped and disrupted, giving rise to a population of intra-cluster stars in their host halos. However, the amount of intra-cluster stars thus predicted is too large compared to observation. This suggests that current galaxy formation models still have serious problems in modeling star formation in low-mass halos.Comment: 12 pages, 6 figures, accepted for publication in Ap

    A Facile and Green Microwave-Assisted Strategy to Induce Surface Properties on Complex-Shape Polymeric 3D Printed Structures

    Get PDF
    Light- induced polymeric 3D printing is becoming a well-established fabrication method, showing manifold advantages such as control of the local chemistry of the manufactured devices. It can be considered a green technology, since the parts are produced when needed and with minimum amount of materials. In this work 3D printing is combined with another green technology, microwave-assisted reaction, to fabricate objects of complex geometry with controllable surface properties, exploiting the presence of remaining functional groups on the surface of 3D printed specimens. In this context, surface functionalization with different amines is studied, optimizing formulations, reaction times, and avoiding surface deterioration. Then, two different applications are investigated. MW-functionalized filter-type structures have been tested against Staphylococcus aureus bacteria, showing high bactericidal activity on the surface along all areas of the complex-shaped structure. Second, a fluidic chip composed of three separated channels is 3D printed, filled with different amine-reactive dyes (dansyl and eosine derivatives), and made to react simultaneously. Complete and independent functionalization of the surface of the three channels is achieved only after 2 min of irradiation. This study demonstrates that light induced 3D printing and microwave-induced chemistry can be used together effectively, and used to produce functional devices

    Sfrp3 modulates stromal-epithelial crosstalk during mammary gland development by regulating Wnt levels

    Get PDF
    Mammary stroma is essential for epithelial morphogenesis and development. Indeed, postnatal mammary gland (MG) development is controlled locally by the repetitive and bi-directional cross-talk between the epithelial and the stromal compartment. However, the signalling pathways involved in stromal–epithelial communication are not entirely understood. Here, we identify Sfrp3 as a mediator of the stromal–epithelial communication that is required for normal mouse MG development. Using Drosophila wing imaginal disc, we demonstrate that Sfrp3 functions as an extracellular transporter of Wnts that facilitates their diffusion, and thus, their levels in the boundaries of different compartments. Indeed, loss of Sfrp3 in mice leads to an increase of ductal invasion and branching mirroring an early pregnancy state. Finally, we observe that loss of Sfrp3 predisposes for invasive breast cancer. Altogether, our study shows that Sfrp3 controls MG morphogenesis by modulating the stromal-epithelial cross-talk during pubertal development

    Weak lensing mass reconstructions of the ESO Distant Cluster Survey

    Full text link
    We present weak lensing mass reconstructions for the 20 high-redshift clusters i n the ESO Distant Cluster Survey. The weak lensing analysis was performed on deep, 3-color optical images taken with VLT/FORS2, using a composite galaxy catalog with separate shape estimators measured in each passband. We find that the EDisCS sample is composed primarily of clusters that are less massive than t hose in current X-ray selected samples at similar redshifts, but that all of the fields are likely to contain massive clusters rather than superpositions of low mass groups. We find that 7 of the 20 fields have additional massive structures which are not associated with the clusters and which can affect the weak lensing mass determination. We compare the mass measurements of the remaining 13 clusters with luminosity measurements from cluster galaxies selected using photometric redshifts and find evidence of a dependence of the cluster mass-to-light ratio with redshift. Finally we determine the noise level in the shear measurements for the fields as a function of exposure time and seeing and demonstrate that future ground-based surveys which plan to perform deep optical imaging for use in weak lensing measurements must achieve point-spread functions smaller than a median of 0.6" FWHM.Comment: 35 pages, 24 figures, accepted to A&A, a version with better figure resolution can be found at http://www.mpa-garching.mpg.de/ediscs/papers.htm

    On the Origin of the Galaxy Star-Formation-Rate Sequence: Evolution and Scatter

    Full text link
    We use a semi-analytic model for disk galaxies to explore the origin of the time evolution and small scatter of the galaxy SFR sequence -- the tight correlation between star-formation rate (SFR) and stellar mass (M_star). The steep decline of SFR from z~2 to the present, at fixed M_star, is a consequence of the following: First, disk galaxies are in a steady state with the SFR following the net (i.e., inflow minus outflow) gas accretion rate. The evolution of the SFR sequence is determined by evolution in the cosmological specific accretion rates, \propto (1+z)^{2.25}, but is found to be independent of feedback. Although feedback determines the outflow rates, it shifts galaxies along the SFR sequence, leaving its zero point invariant. Second, the conversion of accretion rate to SFR is materialized through gas density, not gas mass. Although the model SFR is an increasing function of both gas mass fraction and gas density, only the gas densities are predicted to evolve significantly with redshift. Third, star formation is fueled by molecular gas. Since the molecular gas fraction increases monotonically with increasing gas density, the model predicts strong evolution in the molecular gas fractions, increasing by an order of magnitude from z=0 to z~2. On the other hand, the model predicts that the effective surface density of atomic gas is ~10 M_sun pc^{-2}, independent of redshift, stellar mass or feedback. Our model suggests that the scatter in the SFR sequence reflects variations in the gas accretion history, and thus is insensitive to stellar mass, redshift or feedback. The large scatter in halo spin contributes negligibly, because it scatters galaxies along the SFR sequence. An observational consequence of this is that the scatter in the SFR sequence is independent of the size (both stellar and gaseous) of galaxy disks.Comment: 24 pages, 19 figures, accepted to MNRAS, minor changes to previous versio

    Lead Optimization of 3,5-Disubstituted-7-Azaindoles for the Treatment of Human African Trypanosomiasis

    Get PDF
    Neglected tropical diseases such as human African trypanosomiasis (HAT) are prevalent primarily in tropical climates and among populations living in poverty. Historically, the lack of economic incentive to develop new treatments for these diseases has meant that existing therapeutics have serious shortcomings in terms of safety, efficacy, and administration, and better therapeutics are needed. We now report a series of 3,5-disubstituted-7-azaindoles identified as growth inhibitors of Trypanosoma brucei, the parasite that causes HAT, through a high-throughput screen. We describe the hit-to-lead optimization of this series and the development and preclinical investigation of 29d, a potent antitrypanosomal compound with promising pharmacokinetic (PK) parameters. This compound was ultimately not progressed beyond in vivo PK studies due to its inability to penetrate the blood-brain barrier (BBB), critical for stage 2 HAT treatments

    Structural Properties of Central Galaxies in Groups and Clusters

    Get PDF
    Using a representative sample of 911 central galaxies (CENs) from the SDSS DR4 group catalogue, we study how the structure of the most massive members in groups and clusters depend on (1) galaxy stellar mass (Mstar), (2) dark matter halo mass of the host group (Mhalo), and (3) their halo-centric position. We establish and thoroughly test a GALFIT-based pipeline to fit 2D Sersic models to SDSS data. We find that the fitting results are most sensitive to the background sky level determination and strongly recommend using the SDSS global value. We find that uncertainties in the background translate into a strong covariance between the total magnitude, half-light size (r50), and Sersic index (n), especially for bright/massive galaxies. We find that n depends strongly on Mstar for CENs, but only weakly or not at all on Mhalo. Less (more) massive CENs tend to be disk (spheroid)-like over the full Mhalo range. Likewise, there is a clear r50-Mstar relation for CENs, with separate slopes for disks and spheroids. When comparing CENs with satellite galaxies (SATs), we find that low mass (<10e10.75 Msun/h^2) SATs have larger median n than CENs of similar Mstar. Low mass, late-type SATs have moderately smaller r50 than late-type CENs of the same Mstar. However, we find no size differences between spheroid-like CENs and SATs, and no structural differences between CENs and SATs matched in both mass and colour. The similarity of massive SATs and CENs shows that this distinction has no significant impact on the structure of spheroids. We conclude that Mstar is the most fundamental property determining the basic structure of a galaxy. The lack of a clear n-Mhalo relation rules out a distinct group mass for producing spheroids, and the responsible morphological transformation processes must occur at the centres of groups spanning a wide range of masses. (abridged)Comment: 22 pages, 14 figures, submitted to MNRA

    Screening, diagnosis and monitoring of sarcopenia:When to use which tool?

    Get PDF
    Background & aims: Sarcopenia is a muscle disorder associated with loss of muscle mass, strength and function. Early screening, diagnosis and treatment may improve outcome in different disease conditions. A wide variety of tools for estimation of muscle mass is available and each tool has specific technical requirements. However, different investigational settings and lack of homogeneity of populations influence the definition of gold standards, proving it difficult to systematically adopt these tools. Recently, the European Working Group on Sarcopenia in Older People (EWGSOP) published a revised recommendation (EWGSOP-2) and algorithm for using tools for screening and diagnosing sarcopenia. However, agreement of the EWGSOP2 criteria with other classifications is poor and although an overview of available tools is valuable, for the purpose of clinical decision-making the reverse is useful; a given scenario asks for the most suitable tools. Results: Tools were identified for screening, diagnostics and longitudinal monitoring of muscle mass. For each of these clinical scenarios the most appropriate tools were listed and for each technique their usability is specified based on sensitivity and specificity. Based on this information a specific recommendation is made for each clinical scenario. Conclusion: This narrative review provides an overview of currently available tools and future developments for different clinical scenarios such as screening, diagnosis and longitudinal monitoring of alterations in muscle status. It supports clinical decision-making in choosing the right tools for muscle mass quantification depending on the need within a given clinical scenario as well as the local availability and expertise. (C) 2022 The Author(s). Published by Elsevier Ltd on behalf of European Society for Clinical Nutrition and Metabolism
    • …
    corecore