254 research outputs found
Evidence of two-dimensional macroscopic quantum tunneling of a current-biased DC-SQUID
The escape probability out of the superconducting state of a hysteretic
DC-SQUID has been measured at different values of the applied magnetic flux. At
low temperature, the escape current and the width of the probability
distribution are temperature independent but they depend on flux. Experimental
results do not fit the usual one-dimensional (1D) Macroscopic Quantum Tunneling
(MQT) law but are perfectly accounted for by the two-dimensional (2D) MQT
behaviour as we propose here. Near zero flux, our data confirms the recent MQT
observation in a DC-SQUID \cite{Li02}.Comment: 4 pages, 4 figures Accepted to PR
Are violations to temporal Bell inequalities there when somebody looks?
The possibility of observing violations of temporal Bell inequalities,
originally proposed by Leggett as a mean of testing the quantum mechanical
delocalization of suitably chosen macroscopic bodies, is discussed by taking
into account the effect of the measurement process. A general criterion
quantifying this possibility is defined and shown not to be fulfilled by the
various experimental configurations proposed so far to test inequalities of
different forms.Comment: 7 pages, 1 eps figure, needs europhys.sty and euromacr.tex, enclosed
in the .tar.gz file; accepted for publication in Europhysics Letter
Quantum effects after decoherence in a quenched phase transition
We study a quantum mechanical toy model that mimics some features of a
quenched phase transition. Both by virtue of a time-dependent Hamiltonian or by
changing the temperature of the bath we are able to show that even after
classicalization has been reached, the system may display quantum behaviour
again. We explain this behaviour in terms of simple non-linear analysis and
estimate relevant time scales that match the results of numerical simulations
of the master-equation. This opens new possibilities both in the study of
quantum effects in non-equilibrium phase transitions and in general
time-dependent problems where quantum effects may be relevant even after
decoherence has been completed.Comment: 7 pages, 7 figures, revtex, important revisions made. To be published
in Phys. Rev.
Continuous weak measurement of quantum coherent oscillations
We consider the problem of continuous quantum measurement of coherent
oscillations between two quantum states of an individual two-state system. It
is shown that the interplay between the information acquisition and the
backaction dephasing of the oscillations by the detector imposes a fundamental
limit, equal to 4, on the signal-to-noise ratio of the measurement. The limit
is universal, e.g., independent of the coupling strength between the detector
and system, and results from the tendency of quantum measurement to localize
the system in one of the measured eigenstates
Optimal Monitoring of Position in Nonlinear Quantum Systems
We discuss a model of repeated measurements of position in a quantum system
which is monitored for a finite amount of time with a finite instrumental
error. In this framework we recover the optimum monitoring of a harmonic
oscillator proposed in the case of an instantaneous collapse of the
wavefunction into an infinite-accuracy measurement result. We also establish
numerically the existence of an optimal measurement strategy in the case of a
nonlinear system. This optimal strategy is completely defined by the spectral
properties of the nonlinear system.Comment: 4 pages, REVTeX 3.0, 4 PostScript figure
Self-aligned nanoscale SQUID on a tip
A nanometer-sized superconducting quantum interference device (nanoSQUID) is
fabricated on the apex of a sharp quartz tip and integrated into a scanning
SQUID microscope. A simple self-aligned fabrication method results in
nanoSQUIDs with diameters down to 100 nm with no lithographic processing. An
aluminum nanoSQUID with an effective area of 0.034 m displays flux
sensitivity of 1.8 \mu_B/\mathrm{Hz}^{1/2}$ and high bandwidth, the SQUID on a tip is a highly
promising probe for nanoscale magnetic imaging and spectroscopy.Comment: 14 manuscript pages, 5 figure
Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010
© Author(s) 2011. This work is distributed under the Creative Commons Attribution 3.0 LicenseAirborne lidar and in-situ measurements of aerosols and trace gases were performed in volcanic ash plumes over Europe between Southern Germany and Iceland with the Falcon aircraft during the eruption period of the Eyjafjalla1 volcano between 19 April and 18 May 2010. Flight planning and measurement analyses were supported by a refined Meteosat ash product and trajectory model analysis. The volcanic ash plume was observed with lidar directly over the volcano and up to a distance of 2700 km downwind, and up to 120 h plume ages. Aged ash layers were between a few 100 m to 3 km deep, occurred between 1 and 7 km altitude, and were typically 100 to 300 km wide. Particles collected by impactors had diameters up to 20 μm diameter, with size and age dependent composition. Ash mass concentrations were derived from optical particle spectrometers for a particle density of 2.6 g cm-3 and various values of the refractive index (RI, real part: 1.59; 3 values for the imaginary part: 0, 0.004 and 0.008). The mass concentrations, effective diameters and related optical properties were compared with ground-based lidar observations. Theoretical considerations of particle sedimentation constrain the particle diameters to those obtained for the lower RI values. The ash mass concentration results have an uncertainty of a factor of two. The maximum ash mass concentration encountered during the 17 flights with 34 ash plume penetrations was below 1 mg m-3. The Falcon flew in ash clouds up to about 0.8 mg m-3 for a few minutes and in an ash cloud with approximately 0.2 mg -3 mean-concentration for about one hour without engine damage. The ash plumes were rather dry and correlated with considerable CO and SO2 increases and O3 decreases. To first order, ash concentration and SO2 mixing ratio in the plumes decreased by a factor of two within less than a day. In fresh plumes, the SO2 and CO concentration increases were correlated with the ash mass concentration. The ash plumes were often visible slantwise as faint dark layers, even for concentrations below 0.1 mg m-3. The large abundance of volatile Aitken mode particles suggests previous nucleation of sulfuric acid droplets. The effective diameters range between 0.2 and 3 μm with considerable surface and volume contributions from the Aitken and coarse mode aerosol, respectively. The distal ash mass flux on 2 May was of the order of 500 (240-1600) kgs -1. The volcano induced about 10 (2.5-50) Tg of distal ash mass and about 3 (0.6-23) Tg of SO2 during the whole eruption period. The results of the Falcon flights were used to support the responsible agencies in their decisions concerning air traffic in the presence of volcanic ash.Peer reviewe
Decoherence in rf SQUID Qubits
We report measurements of coherence times of an rf SQUID qubit using pulsed
microwaves and rapid flux pulses. The modified rf SQUID, described by an
double-well potential, has independent, in situ, controls for the tilt and
barrier height of the potential. The decay of coherent oscillations is
dominated by the lifetime of the excited state and low frequency flux noise and
is consistent with independent measurement of these quantities obtained by
microwave spectroscopy, resonant tunneling between fluxoid wells and decay of
the excited state. The oscillation's waveform is compared to analytical results
obtained for finite decay rates and detuning and averaged over low frequency
flux noise.Comment: 24 pages, 13 figures, submitted to the journal Quantum Information
Processin
Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET
© Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License.The eruption of the Icelandic volcano Eyjafjallaj ökull in April-May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET). Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D) distribution of the Eyjafjallajökull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April-26 May 2010). All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio) are stored in the EARLINET database available at www.earlinet.org. A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at www.earlinet.org. During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL). After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5-15 May), material emitted by the Eyjafjallajökull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area. The 4-D distribution of volcanic aerosol layering and optical properties on European scale reported here provides an unprecedented data set for evaluating satellite data and aerosol dispersion models for this kind of volcanic events.Peer reviewe
Quantum state engineering with Josephson-junction devices
We review recent theoretical and experimental progress in quantum state
engineering with Josephson junction devices. The concepts of quantum computing
have stimulated an increased activity in the field. Either charges or phases
(fluxes) of the Josephson systems can be used as quantum degrees of freedom,
and their quantum state can be manipulated coherently by voltage and current
pulses. They thus can serve as qubits, and quantum logic gates can be
performed. Their phase coherence time, which is limited, e.g., by the
electromagnetic fluctuations in the control circuit, is long enough to allow a
series of these manipulations. The quantum measurement process performed by a
single-electron transistor, a SQUID, or further nanoelectronic devices is
analyzed in detail.Comment: An article prepared for Reviews of Modern Physics, 46 pages, 23
figure
- …
