270 research outputs found

    Quantum systems in weak gravitational fields

    Get PDF
    Fully covariant wave equations predict the existence of a class of inertial-gravitational effects that can be tested experimentally. In these equations inertia and gravity appear as external classical fields, but, by conforming to general relativity, provide very valuable information on how Einstein's views carry through in the world of the quantum.Comment: 22 pages. To be published in Proceedings of the 17th Course of the International School of Cosmology and Gravitation "Advances in the interplay between quantum and gravity physics" edited by V. De Sabbata and A. Zheltukhin, Kluwer Academic Publishers, Dordrech

    A cross-national study on the antecedents of work–life balance from the fit and balance perspective

    Get PDF
    Drawing on the perceived work–family fit and balance perspective, this study investigates demands and resources as antecedents of work–life balance (WLB) across four countries (New Zealand, France, Italy and Spain), so as to provide empirical cross-national evidence. Using structural equation modelling analysis on a sample of 870 full time employees, we found that work demands, hours worked and family demands were negatively related to WLB, while job autonomy and supervisor support were positively related to WLB. We also found evidence that resources (job autonomy and supervisor support) moderated the relationships between demands and work–life balance, with high resources consistently buffering any detrimental influence of demands on WLB. Furthermore, our study identified additional predictors of WLB that were unique to some national contexts. For example, in France and Italy, overtime hours worked were negatively associated with WLB, while parental status was positively associated with WLB. Overall, the implications for theory and practice are discussed.Peer ReviewedPostprint (author's final draft

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Large neutral amino acids in the treatment of PKU: from theory to practice

    Get PDF
    Notwithstanding the success of the traditional dietary phenylalanine restriction treatment in phenylketonuria (PKU), the use of large neutral amino acid (LNAA) supplementation rather than phenylalanine restriction has been suggested. This treatment modality deserves attention as it might improve cognitive outcome and quality of life in patients with PKU. Following various theories about the pathogenesis of cognitive dysfunction in PKU, LNAA supplementation may have multiple treatment targets: a specific reduction in brain phenylalanine concentrations, a reduction in blood (and consequently brain) phenylalanine concentrations, an increase in brain neurotransmitter concentrations, and an increase in brain essential amino acid concentrations. These treatment targets imply different treatment regimes. This review summarizes the treatment targets and the treatment regimens of LNAA supplementation and discusses the differences in LNAA intake between the classical dietary phenylalanine-restricted diet and several LNAA treatment forms

    The Ontogenetic Osteohistology of Tenontosaurus tilletti

    Get PDF
    Tenontosaurus tilletti is an ornithopod dinosaur known from the Early Cretaceous (Aptian-Albian) Cloverly and Antlers formations of the Western United States. It is represented by a large number of specimens spanning a number of ontogenetic stages, and these specimens have been collected across a wide geographic range (from central Montana to southern Oklahoma). Here I describe the long bone histology of T. tilletti and discuss histological variation at the individual, ontogenetic and geographic levels. The ontogenetic pattern of bone histology in T. tilletti is similar to that of other dinosaurs, reflecting extremely rapid growth early in life, and sustained rapid growth through sub-adult ontogeny. But unlike other iguanodontians, this dinosaur shows an extended multi-year period of slow growth as skeletal maturity approached. Evidence of termination of growth (e.g., an external fundamental system) is observed in only the largest individuals, although other histological signals in only slightly smaller specimens suggest a substantial slowing of growth later in life. Histological differences in the amount of remodeling and the number of lines of arrested growth varied among elements within individuals, but bone histology was conservative across sampled individuals of the species, despite known paleoenvironmental differences between the Antlers and Cloverly formations. The bone histology of T. tilletti indicates a much slower growth trajectory than observed for other iguanodontians (e.g., hadrosaurids), suggesting that those taxa reached much larger sizes than Tenontosaurus in a shorter time

    The growth and evolution of cardiovascular magnetic resonance: a 20-year history of the Society for Cardiovascular Magnetic Resonance (SCMR) annual scientific sessions

    Get PDF
    Background and purpose: The purpose of this work is to summarize cardiovascular magnetic resonance (CMR) research trends and highlights presented at the annual Society for Cardiovascular Magnetic Resonance (SCMR) scientific sessions over the past 20 years. Methods: Scientific programs from all SCMR Annual Scientific Sessions from 1998 to 2017 were obtained. SCMR Headquarters also provided data for the number and the country of origin of attendees and the number of accepted abstracts according to type. Data analysis included text analysis (key word extraction) and visualization by β€˜word clouds’ representing the most frequently used words in session titles for 5-year intervals. In addition, session titles were sorted into 17 major subject categories to further evaluate research and clinical CMR trends over time. Results: Analysis of SCMR annual scientific sessions locations, attendance, and number of accepted abstracts demonstrated substantial growth of CMR research and clinical applications. As an international field of study, significant growth of CMR was documented by a strong increase in SCMR scientific session attendance (> 500%, 270 to 1406 from 1998 to 2017, number of accepted abstracts (> 700%, 98 to 701 from 1998 to 2018) and number of international participants (42–415% increase for participants from Asia, Central and South America, Middle East and Africa in 2004–2017). β€˜Word clouds’ based evaluation of research trends illustrated a shift from early focus on β€˜MRI technique feasibility’ to new established techniques (e.g. late gadolinium enhancement) and their clinical applications and translation (key words β€˜patient’, β€˜disease’) and more recently novel techniques and quantitative CMR imaging (key words β€˜mapping’, β€˜T1’, β€˜flow’, β€˜function’). Nearly every topic category demonstrated an increase in the number of sessions over the 20-year period with β€˜Clinical Practice’ leading all categories. Our analysis identified three growth areas β€˜Congenital’, β€˜Clinical Practice’, and β€˜Structure/function/flow’. Conclusion: The analysis of the SCMR historical archives demonstrates a healthy and internationally active field of study which continues to undergo substantial growth and expansion into new and emerging CMR topics and clinical application areas

    The development and general morphology of the telencephalon of actinopterygian fishes: synopsis, documentation and commentary

    Get PDF
    The Actinopterygii or ray-finned fishes comprise, in addition to the large superorder of teleosts, four other superorders, namely the cladistians, the chondrosteans, the ginglymodes, and the halecomorphs, each with a limited number of species. The telencephalon of actinopterygian fishes differs from that in all other vertebrates in that it consists of a pair of solid lobes. Lateral ventricles surrounded by nervous tissue are entirely lacking. At the end of the nineteenth century, the theory was advanced that the unusual configuration of the forebrain in actinopterygians results from an outward bending or eversion of its lateral walls. This theory was accepted by some authors, rejected or neglected by others, and modified by some other authors. The present paper is based on the data derived from the literature, complemented by new observations on a large collection of histological material comprising specimens of all five actinopterygian superorders. The paper consists of three parts. In the first, a survey of the development of the telencephalon in actinopterygian fishes is presented. The data collected show clearly that an outward bending or eversion of the pallial parts of the solid hemispheres is the principal morphogenetic event in all five actinopterygian superorders. In all of these superorders, except for the cladistians, eversion is coupled with a marked thickening of the pallial walls. In the second part, some aspects of the general morphology of the telencephalon in mature actinopterygians are highlighted. It is pointed out that (1) the degree of eversion varies considerably among the various actinopterygian groups; (2) eversion leads to the transformation of the telencephalic roof plate into a wide membrane or tela choroidea, which is bilaterally attached to the lateral or ventrolateral aspect of the solid hemispheres; (3) the lines of attachment or taeniae of the tela choroidea form the most important landmarks in the telencephalon of actinopterygians, indicating the sites where the greatly enlarged ventricular surface of the hemispheres ends and its reduced meningeal surface begins; (4) the meningeal surface of the telencephalon shows in most actinopterygians bilaterally a longitudinally oriented sulcus externus, the depth of which is generally positively correlated with the degree of eversion; (5) a distinct lateral olfactory tract, occupying a constant topological position close to the taenia, is present in all actinopterygians studied; and (6) this tract is not homologous to the tract of the same name in the evaginated and inverted forebrains of other groups of vertebrates. In the third and final section, the concept that the structural organization of the pallium in actinopterygians can be fully explained by a simple eversion of its walls, and the various theories, according to which the eversion is complicated by extensive shifts of its constituent cell groups, are discussed and evaluated. It is concluded that there are no reasons to doubt that the pallium of actinopterygian fishes is the product of a simple and complete eversion

    Tension-Compression Loading with Chemical Stimulation Results in Additive Increases to Functional Properties of Anatomic Meniscal Constructs

    Get PDF
    Objective: This study aimed to improve the functional properties of anatomically-shaped meniscus constructs through simultaneous tension and compression mechanical stimulation in conjunction with chemical stimulation. Methods: Scaffoldless meniscal constructs were subjected to simultaneous tension and compressive stimulation and chemical stimulation. The temporal aspect of mechanical loadingwas studied by employing two separate five day stimulation periods. Chemical stimulation consisted of the application of a catabolic GAG-depleting enzyme, chondroitinase ABC (C-ABC), and an anabolic growth factor, TGF-b1. Mechanical and chemical stimulation combinations were studied through a full-factorial experimental design and assessed for histological, biochemical, and biomechanical properties following 4 wks of culture. Results: Mechanical loading applied from days 10–14 resulted in significant increases in compressive, tensile, and biochemical properties of meniscal constructs. When mechanical and chemical stimuliwere combined significant additive increases in collagen per wet weight (4-fold), compressive instantaneous (3-fold) and relaxation (2-fold) moduli, and tensile moduli in the circumferential (4-fold) and radial (6-fold) directions were obtained. Conclusions: This study demonstrates that a stimulation regimen of simultaneous tension and compression mechanical stimulation, C-ABC, and TGF-b1 is able to create anatomic meniscus constructs replicating the compressive mechanica

    Suppression of apoptosis inhibitor c-FLIP selectively eliminates breast cancer stem cell activity in response to the anti-cancer agent, TRAIL

    Get PDF
    Introduction It is postulated that breast cancer stem cells (bCSCs) mediate disease recurrence and drive formation of distant metastases - the principal cause of mortality in breast cancer patients. Therapeutic targeting of bCSCs however, is hampered by their heterogeneity and resistance to existing therapeutics. In order to identify strategies to selectively remove bCSCs from breast cancers, irrespective of their clinical subtype, we sought an apoptosis mechanism that would target bCSCs yet would not kill normal cells. Suppression of the apoptosis inhibitor cellular FLICE-Like Inhibitory Protein (c-FLIP) partially sensitizes breast cancer cells to the anti-cancer agent Tumour Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL). Here we demonstrate in breast cancer cell lines that bCSCs are exquisitely sensitive to the de-repression of this pro-apoptotic pathway, resulting in a dramatic reduction in experimental metastases and the loss of bCSC self-renewal. Methods Suppression c-FLIP was performed by siRNA (FLIPi) in four breast cancer cell lines and by conditional gene-knockout in murine mammary glands. Sensitivity of these cells to TRAIL was determined by complementary cell apoptosis assays, including a novel heterotypic cell assay, while tumour-initiating potential of cancer stem cell subpopulations was determined by mammosphere cultures, aldefluor assay and in vivo transplantation. Results Genetic suppression of c-FLIP resulted in the partial sensitization of TRAIL-resistant cancer lines to the pro-apoptotic effects of TRAIL, irrespective of their cellular phenotype, yet normal mammary epithelial cells remained refractory to killing. While 10%-30% of the cancer cell populations remained viable after TRAIL/FLIPi treatment, subsequent mammosphere and aldefluor assays demonstrated that this pro-apoptotic stimulus selectively targeted the functional bCSC pool, eliminating stem cell renewal. This culminated in an 80% reduction in primary tumours and a 98% reduction in metastases following transplantation. The recurrence of residual tumour initiating capacity was consistent with the observation that post-treated adherent cultures re-acquired bCSC-like properties in vitro. Importantly however this recurrent bCSC activity was attenuated following repeated TRAIL/FLIPi treatment. Conclusions We describe an apoptotic mechanism that selectively and repeatedly removes bCSC activity from breast cancer cell lines and suggest that a combined TRAIL/FLIPi therapy could prevent metastatic disease progression in a broad range of breast cancer subtypes. [PROVISIONAL
    • …
    corecore