719 research outputs found

    Using geographically weighted regression to explore the spatially heterogeneous spread of bovine tuberculosis in England and Wales

    Get PDF
    An understanding of the factors that affect the spread of endemic bovine tuberculosis (bTB) is critical for the development of measures to stop and reverse this spread. Analyses of spatial data need to account for the inherent spatial heterogeneity within the data, or else spatial autocorrelation can lead to an overestimate of the significance of variables. This study used three methods of analysis—least-squares linear regression with a spatial autocorrelation term, geographically weighted regression (GWR) and boosted regression tree (BRT) analysis—to identify the factors that influence the spread of endemic bTB at a local level in England and Wales. The linear regression and GWR methods demonstrated the importance of accounting for spatial differences in risk factors for bTB, and showed some consistency in the identification of certain factors related to flooding, disease history and the presence of multiple genotypes of bTB. This is the first attempt to explore the factors associated with the spread of endemic bTB in England and Wales using GWR. This technique improves on least-squares linear regression approaches by identifying regional differences in the factors associated with bTB spread. However, interpretation of these complex regional differences is difficult and the approach does not lend itself to predictive models which are likely to be of more value to policy makers. Methods such as BRT may be more suited to such a task. Here we have demonstrated that GWR and BRT can produce comparable outputs

    Drivers of lichen species richness at multiple spatial scales in temperate forests

    Get PDF
    Only few studies analysing lichen diversity have simultaneously considered interactions among drivers that operate at different spatial and temporal scales. Aims: The aims of this study were to evaluate the relative importance of host tree, and local, landscape and historical factors in explaining lichen diversity in managed temperate forests, and to test the potential interactions among factors acting at different spatial scales. Methods: Thirty-five stands were selected in the Őrség region, western Hungary. Linear models and multi-model inference within an information-theory framework were used to evaluate the role of different variables on lichen species richness. Results: Drivers at multiple spatial scales contributed to shaping lichen species richness both at the tree and plot levels. Tree level species richness was related to both tree and plot level factors. With increasing relative diffuse light lichen species richness increased; this effect was stronger on higher than on lower part of the trunks. At the plot-scale, species richness was affected by local drivers. Landscape and historical factors had no or only marginal effect. Conclusions: Lichen conservation in temperate managed forests could be improved if the complex interactions among host tree quality and availability, micro-climatic conditions, and management were taken into consideration

    Effect of Biodiversity Changes in Disease Risk: Exploring Disease Emergence in a Plant-Virus System

    Get PDF
    The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk) is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect), and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect). Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin) under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species

    Higher songs of city birds may not be an individual response to noise

    Get PDF
    It has been observed in many songbird species that populations in noisy urban areas sing with a higher minimum frequency than do matched populations in quieter, less developed areas. However, why and how this divergence occurs is not yet understood. We experimentally tested whether chronic noise exposure during vocal learning results in songs with higher minimum frequencies in great tits (Parus major), the first species for which a correlation between anthropogenic noise and song frequency was observed. We also tested vocal plasticity of adult great tits in response to changing background noise levels by measuring song frequency and amplitude as we changed noise conditions. We show that noise exposure during ontogeny did not result in songs with higher minimum frequencies. In addition, we found that adult birds did not make any frequency or song usage adjustments when their background noise conditions were changed after song crystallization. These results challenge the common view of vocal adjustments by city birds, as they suggest that either noise itself is not the causal force driving the divergence of song frequency between urban and forest populations, or that noise induces population-wide changes over a time scale of several generations rather than causing changes in individual behaviour

    Analysis of among-site variation in substitution patterns

    Get PDF
    Substitution patterns among nucleotides are often assumed to be constant in phylogenetic analyses. Although variation in the average rate of substitution among sites is commonly accounted for, variation in the relative rates of specific types of substitution is not. Here, we review details of methodologies used for detecting and analyzing differences in substitution processes among predefined groups of sites. We describe how such analyses can be performed using existing phylogenetic tools, and discuss how new phylogenetic analysis tools we have recently developed can be used to provide more detailed and sensitive analyses, including study of the evolution of mutation and substitution processes. As an example we consider the mitochondrial genome, for which two types of transition deaminations (C⇒T and A⇒G) are strongly affected by single-strandedness during replication, resulting in a strand asymmetric mutation process. Since time spent single-stranded varies along the mitochondrial genome, their differential mutational response results in very different substitution patterns in different regions of the genome

    Evaluation of genetic isolation within an island flora reveals unusually widespread local adaptation and supports sympatric speciation

    Get PDF
    It is now recognized that speciation can proceed even when divergent natural selection is opposed by gene flow. Understanding the extent to which environmental gradients and geographical distance can limit gene flow within species can shed light on the relative roles of selection and dispersal limitation during the early stages of population divergence and speciation. On the remote Lord Howe Island (Australia), ecological speciation with gene flow is thought to have taken place in several plant genera. The aim of this study was to establish the contributions of isolation by environment (IBE) and isolation by community (IBC) to the genetic structure of 19 plant species, from a number of distantly related families, which have been subjected to similar environmental pressures over comparable time scales. We applied an individual-based, multivariate, model averaging approach to quantify IBE and IBC, while controlling for isolation by distance (IBD). Our analyses demonstrated that all species experienced some degree of ecologically driven isolation, whereas only 12 of 19 species were subjected to IBD. The prevalence of IBE within these plant species indicates that divergent selection in plants frequently produces local adaptation and supports hypotheses that ecological divergence can drive speciation in sympatry

    Spatial heterogeneity of habitat suitability for Rift Valley fever occurrence in Tanzania: an ecological niche modelling approach

    Get PDF
    Despite the long history of Rift Valley fever (RVF) in Tanzania, extent of its suitable habitat in the country remains unclear. In this study we investigated potential effects of temperature, precipitation, elevation, soil type, livestock density, rainfall pattern, proximity to wild animals, protected areas and forest on the habitat suitability for RVF occurrence in Tanzania. Presence-only records of 193 RVF outbreak locations from 1930 to 2007 together with potential predictor variables were used to model and map the suitable habitats for RVF occurrence using ecological niche modelling. Ground-truthing of the model outputs was conducted by comparing the levels of RVF virus specific antibodies in cattle, sheep and goats sampled from locations in Tanzania that presented different predicted habitat suitability values. Habitat suitability values for RVF occurrence were higher in the northern and central-eastern regions of Tanzania than the rest of the regions in the country. Soil type and precipitation of the wettest quarter contributed equally to habitat suitability (32.4% each), followed by livestock density (25.9%) and rainfall pattern (9.3%). Ground-truthing of model outputs revealed that the odds of an animal being seropositive for RVFV when sampled from areas predicted to be most suitable for RVF occurrence were twice the odds of an animal sampled from areas least suitable for RVF occurrence (95% CI: 1.43, 2.76, p < 0.001). The regions in the northern and central-eastern Tanzania were more suitable for RVF occurrence than the rest of the regions in the country. The modelled suitable habitat is characterised by impermeable soils, moderate precipitation in the wettest quarter, high livestock density and a bimodal rainfall pattern. The findings of this study should provide guidance for the design of appropriate RVF surveillance, prevention and control strategies which target areas with these characteristics

    Comparison of Statistical Population Reconstruction Using Full and Pooled Adult Age-Class Data

    Get PDF
    BACKGROUND: Age-at-harvest data are among the most commonly collected, yet neglected, demographic data gathered by wildlife agencies. Statistical population construction techniques can use this information to estimate the abundance of wild populations over wide geographic areas and concurrently estimate recruitment, harvest, and natural survival rates. Although current reconstruction techniques use full age-class data (0.5, 1.5, 2.5, 3.5, … years), it is not always possible to determine an animal's age due to inaccuracy of the methods, expense, and logistics of sample collection. The ability to inventory wild populations would be greatly expanded if pooled adult age-class data (e.g., 0.5, 1.5, 2.5+ years) could be successfully used in statistical population reconstruction. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the performance of statistical population reconstruction models developed to analyze full age-class and pooled adult age-class data. We performed Monte Carlo simulations using a stochastic version of a Leslie matrix model, which generated data over a wide range of abundance levels, harvest rates, and natural survival probabilities, representing medium-to-big game species. Results of full age-class and pooled adult age-class population reconstructions were compared for accuracy and precision. No discernible difference in accuracy was detected, but precision was slightly reduced when using the pooled adult age-class reconstruction. On average, the coefficient of variation (i.e., SE(θ)/θ) increased by 0.059 when the adult age-class data were pooled prior to analyses. The analyses and maximum likelihood model for pooled adult age-class reconstruction are illustrated for a black-tailed deer (Odocoileus hemionus) population in Washington State. CONCLUSIONS/SIGNIFICANCE: Inventorying wild populations is one of the greatest challenges of wildlife agencies. These new statistical population reconstruction models should expand the demographic capabilities of wildlife agencies that have already collected pooled adult age-class data or are seeking a cost-effective method for monitoring the status and trends of our wild resources

    The importance of post-translocation monitoring of habitat use and population growth: insights from a Seychelles Warbler (Acrocephalus sechellensis) translocation

    Get PDF
    Translocations are a valuable tool within conservation, and when performed successfully can rescue species from extinction. However, to label a translocation a success, extensive post-translocation monitoring is required, ensuring the population is growing at the expected rate. In 2011, a habitat assessment identified Frégate Island as a suitable island to host a Seychelles Warbler (Acrocephalus sechellensis) population. Later that year, 59 birds were translocated from Cousin Island to Frégate Island. Here, we determine Seychelles Warbler habitat use and population growth on Frégate Island, assessing the status of the translocation and identifying any interventions that may be required. We found that territory quality, an important predictor of fledgling production on Cousin Island, was a poor predictor of bird presence on Frégate Island. Instead, tree diversity, middle-storey vegetation density, and broad-leafed vegetation density all predicted bird presence positively. A habitat suitability map based on these results suggests most of Frégate Island contains either a suitable or a moderately suitable habitat, with patches of unsuitable overgrown coconut plantation. To achieve the maximum potential Seychelles Warbler population size on Frégate Island, we recommend habitat regeneration, such that the highly diverse subset of broad-leafed trees and a dense middle storey should be protected and replace the unsuitable coconut. Frégate Island’s Seychelles Warbler population has grown to 141 birds since the release, the slowest growth rate of all Seychelles Warbler translocations; the cause of this is unclear. This study highlights the value of post-translocation monitoring, identifying habitat use and areas requiring restoration, and ultimately ensuring that the population is growing
    corecore