86 research outputs found

    Ornstein-Uhlenbeck parameter extraction from light curves of Fermi-LAT observed blazars

    Full text link
    Context. Monthly-binned gamma-ray light curves of 236 bright gamma-ray sources, particularly blazars, selected from a sample of 2278 high-galactic latitude objects observed with Fermi-LAT, show flux variability characterized by power spectral densities consisting of a single power-law component, ranging from Brownian to white noise. Aims. The main goal here is to assess the Ornstein-Uhlenbeck (OU) model by studying the range of its three parameters that reproduces these statistical properties. Methods. We develop procedures for extracting values of the three OU model parameters (mean flux, correlation length, and random amplitude) from time series data, and apply them to compare numerical integrations of the OU process with the Fermi-LAT data. Results. The OU process fully describes the statistical properties of the flux variations of the 236 blazars. The distributions of the extracted OU parameters are narrowly peaked about well-defined values (sigma, mu, theta) = (0.2, -8.4, 0.5) with variances (0.004, 0.07, 0.13). The distributions of rise and decay time scales of flares in the numerical simulations, i.e. major flux variations fulfilling pre-defined criteria, are in agreement with the observed ones. The power spectral densities of the synthetic light curves are statistically indistinguishable from those of the measured light curves. Conclusions. Long-term gamma-ray flux variability of blazars on monthly time scales is well described by a stochastic model involving only three parameters. The methods described here are powerful tools to study randomness in light curves and thereby constrain the physical mechanisms responsible for the observed flux variations.Comment: 13 pages, 9 figure

    Diversity and Inclusion in International Communications: Applications for Today’s Work World

    Get PDF
    Verna Myers (2016) advocated that “Diversity is being invited to the party, but inclusion is being asked to dance.” Cultural competence demands a strategic understanding of the importance of harnessing the power of diversity and inclusion in every action in organizations, communities, and nations throughout the world. Today’s work world cannot undervalue the importance of having diverse and inclusive representation in all areas of the organization, especially including international communication. By creating an environment that continually asks questions, values and embraces diversity - then collaborates and reconciles potential solutions to create positive outcomes - creates an inclusive environment in which all can thrive

    Seafloor biodiversity of Canada's three oceans: patterns, hotspots and potential drivers

    Get PDF
    Aim We examined the relationships between bathymetry, latitude and energy and the diversity of marine benthic invertebrates across wide environmental ranges of Canada's three oceans. Location Canadian Pacific, Arctic and Atlantic Oceans from the intertidal zone to upper bathyal depths, encompassing 13 marine ecoregions. Methods We compiled 35 benthic datasets that encompass 3,337 taxa (70% identified to species and 21% to genus) from 13,172 samples spanning 6,117 sites. Partitioning the analyses by different gear types, ecoregions or sites, we used Hill numbers to examine spatial patterns in α‐diversity. We used resampling and extrapolation to standardized sampling effort and examined the effects of depth, latitude, chemical energy (export particulate organic carbon [POC] flux), thermal energy (bottom temperature) and seasonality of primary production on the benthic biodiversity. Results The Canadian Arctic harboured the highest benthic diversity (e.g. epifauna and common and dominant infauna species), whereas the lowest diversity was found in the Atlantic. The Puget Trough (Pacific), Beaufort Sea, Arctic Archipelago, Hudson Bay, Northern Labrador and Southern Grand Bank (Atlantic) were the “hotspots" of diversity among the ecoregions. The infauna and epifauna both exhibited hump‐shaped diversity–depth relationships, with peak diversity near shelf breaks; latitude (positively) predicted infaunal diversity, albeit weakly. Food supply, as inferred from primary production and depth, was more important than thermal energy in controlling diversity patterns. Limitations with respect to calculating POC flux in coastal (e.g. terrestrial runoff) and ice‐covered regions or biological interactions may explain the negative POC flux–infaunal diversity relationship. Main Conclusions We show previously unreported diversity hotspots in the Canadian Arctic and in other ecoregions. Our analyses reveal potential controlling mechanisms of large‐scale benthic biodiversity patterns in Canada's three oceans, which are inconsistent with the prevailing view of seafloor energy–diversity relationships. These results provide insightful information for conservation that can help to implement further MPA networks

    The BenBioDen database, a global database for meio-, macro- and megabenthic biomass and densities

    Get PDF
    Benthic fauna refers to all fauna that live in or on the seafloor, which researchers typically divide into size classes meiobenthos (32/64 µm–0.5/1 mm), macrobenthos (250 µm–1 cm), and megabenthos (>1 cm). Benthic fauna play important roles in bioturbation activity, mineralization of organic matter, and in marine food webs. Evaluating their role in these ecosystem functions requires knowledge of their global distribution and biomass. We therefore established the BenBioDen database, the largest open-access database for marine benthic biomass and density data compiled so far. In total, it includes 11,792 georeferenced benthic biomass and 51,559 benthic density records from 384 and 600 studies, respectively. We selected all references following the procedure for systematic reviews and meta-analyses, and report biomass records as grams of wet mass, dry mass, or ash-free dry mass, or carbon per m2 and as abundance records as individuals per m2. This database provides a point of reference for future studies on the distribution and biomass of benthic fauna

    hnRNP A1 and hnRNP F Modulate the Alternative Splicing of Exon 11 of the Insulin Receptor Gene

    Get PDF
    Exon 11 of the insulin receptor gene (INSR) is alternatively spliced in a developmentally and tissue-specific manner. Linker scanning mutations in a 5′ GA-rich enhancer in intron 10 identified AGGGA sequences that are important for enhancer function. Using RNA-affinity purification and mass spectrometry, we identified hnRNP F and hnRNP A1 binding to these AGGGA sites and also to similar motifs at the 3′ end of the intron. The hnRNPs have opposite functional effects with hnRNP F promoting and hnRNP A1 inhibiting exon 11 inclusion, and deletion of the GA-rich elements eliminates both effects. We also observed specific binding of hnRNP A1 to the 5′ splice site of intron 11. The SR protein SRSF1 (SF2/ASF) co-purified on the GA-rich enhancer and, interestingly, also competes with hnRNP A1 for binding to the splice site. A point mutation -3U→C decreases hnRNP A1 binding, increases SRSF1 binding and renders the exon constitutive. Lastly, our data point to a functional interaction between hnRNP F and SRSF1 as a mutant that eliminates SRSF1 binding to exon 11, or a SRSF1 knockdown, which prevents the stimulatory effect of hnRNP F over expression

    Finding a Needle in the Virus Metagenome Haystack - Micro-Metagenome Analysis Captures a Snapshot of the Diversity of a Bacteriophage Armoire

    Get PDF
    Viruses are ubiquitous in the oceans and critical components of marine microbial communities, regulating nutrient transfer to higher trophic levels or to the dissolved organic pool through lysis of host cells. Hydrothermal vent systems are oases of biological activity in the deep oceans, for which knowledge of biodiversity and its impact on global ocean biogeochemical cycling is still in its infancy. In order to gain biological insight into viral communities present in hydrothermal vent systems, we developed a method based on deep-sequencing of pulsed field gel electrophoretic bands representing key viral fractions present in seawater within and surrounding a hydrothermal plume derived from Loki's Castle vent field at the Arctic Mid-Ocean Ridge. The reduction in virus community complexity afforded by this novel approach enabled the near-complete reconstruction of a lambda-like phage genome from the virus fraction of the plume. Phylogenetic examination of distinct gene regions in this lambdoid phage genome unveiled diversity at loci encoding superinfection exclusion- and integrase-like proteins. This suggests the importance of fine-tuning lyosgenic conversion as a viral survival strategy, and provides insights into the nature of host-virus and virus-virus interactions, within hydrothermal plumes. By reducing the complexity of the viral community through targeted sequencing of prominent dsDNA viral fractions, this method has selectively mimicked virus dominance approaching that hitherto achieved only through culturing, thus enabling bioinformatic analysis to locate a lambdoid viral “needle" within the greater viral community “haystack". Such targeted analyses have great potential for accelerating the extraction of biological knowledge from diverse and poorly understood environmental viral communities

    Inflationary Models with Logarithmic Potentials

    Full text link
    We examine inflationary universe models driven by scalar fields with logarithmic potentials of the form V(ϕ)=V0ϕp(lnϕ)qV(\phi) = V_0 \phi^p(\ln \phi)^q. Combining the slow-roll approximation with asymptotic techniques, we identify regions of the potential where inflation may occur and obtain analytic expressions for the evolution of the field and the metric in these cases. We construct a family of exact solutions to the equations of motion with potentials resembling the above form and demonstrate their inflationary nature; deflationary and conflationary cosmological behaviours are also defined and identified. Finally, a computation of scalar density and tensor gravitational perturbations produced by the model is presented.Comment: 21 Pages + 4 Figures; compressed, tarred, uuencoded PostScrip

    Spontaneous DNA damage to the nuclear genome promotes senescence,redox imbalance and aging

    Get PDF
    Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/Δ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/Δ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/Δ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/Δ mice never exceeded that observed in old WT mice. Surprisingly, levels of reactive oxygen species (ROS) were increased in tissues of Ercc1-/Δ mice to an extent identical to naturally-aged WT mice. Increased enzymatic production of ROS and decreased antioxidants contributed to the elevation in oxidative stress in both Ercc1-/Δ and aged WT mice. Chronic treatment of Ercc1-/Δ mice with the mitochondrial-targeted radical scavenger XJB-5–131 attenuated oxidative DNA damage, senescence and age-related pathology. Our findings indicate that nuclear genotoxic stress arises, at least in part, due to mitochondrial-derived ROS, and this spontaneous DNA damage is sufficient to drive increased levels of ROS, cellular senescence, and the consequent age-related physiological decline

    Spontaneous DNA damage to the nuclear genome promotes senescence, T redox imbalance and aging

    Get PDF
    Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/Δ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/Δ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/Δ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/Δ mice never exceeded that observed in old WT mice. Surprisingly, levels of reactive oxygen species (ROS) were increased in tissues of Ercc1-/Δ mice to an extent identical to naturally-aged WT mice. Increased enzymatic production of ROS and decreased antioxidants contributed to the elevation in oxidative stress in both Ercc1-/Δ and aged WT mice. Chronic treatment of Ercc1-/Δ mice with the mitochondrial-targeted radical scavenger XJB-5–131 attenuated oxidative DNA damage, senescence and age-related pathology. Our findings indicate that nuclear genotoxic stress arises, at least in part, due to mitochondrial-derived ROS, and this spontaneous DNA damage is sufficient to drive increased levels of ROS, cellular senescence, and the consequent age-related physiological decline
    corecore