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A B S T R A C T

Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives
senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA
damage is sufficient to initiate senescence in mammals. Ercc1-/Δ mice with reduced expression of ERCC1-XPF
endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/Δ mice accumulated spontaneous,
oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated
more rapidly in Ercc1-/Δ mice compared to repair-competent animals. However, the levels of DNA damage and
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Aging senescent cells in Ercc1-/Δ mice never exceeded that observed in old WT mice. Surprisingly, levels of reactive
oxygen species (ROS) were increased in tissues of Ercc1-/Δ mice to an extent identical to naturally-aged WT mice.
Increased enzymatic production of ROS and decreased antioxidants contributed to the elevation in oxidative
stress in both Ercc1-/Δ and aged WT mice. Chronic treatment of Ercc1-/Δ mice with the mitochondrial-targeted
radical scavenger XJB-5–131 attenuated oxidative DNA damage, senescence and age-related pathology. Our
findings indicate that nuclear genotoxic stress arises, at least in part, due to mitochondrial-derived ROS, and this
spontaneous DNA damage is sufficient to drive increased levels of ROS, cellular senescence, and the consequent
age-related physiological decline.

1. Introduction

Aging is the primary risk factor for the majority of chronic diseases;
hence, aging is now being considered as a therapeutic target [1].
However, this remains a challenge as the precise molecular mechanisms
underpinning aging are not well defined. Cellular senescence was re-
cently established to play a causal role in aging [2] and many age-
related diseases [3–8]. Senescence is a programmed cell fate char-
acterized by growth arrest, a metabolic shift, resistance to apoptosis
and often a secretory phenotype [9]. The senescent cell burden in-
creases with age in virtually all vertebrates [10–12]. In replicating
human cells, shortened telomeres drive senescence [13]. It has become
increasingly clear that non-replicating cells also undergo senescence
[14]. However, in non-dividing cells, which are the majority of cells in
mammalian organisms, the cause of senescence is not clear.

A variety of cellular stressors including genotoxic, proteotoxic, in-
flammatory and oxidative have been implicated in driving senescence
[9,15]. However, senescence itself is associated with many of these
cellular stressors [16], making it very difficult to decipher cause and
effect. For example, DNA damaging agents definitively cause increased
senescence (e.g. in cancer patients) [17]. Yet senescent cells are defined
by persistent activation of the DNA damage response [18], increased
expression of surrogate markers of DNA damage [19] and are able to
trigger genotoxic stress in neighboring cells [16]. Therefore, in vivo, the
importance of DNA damage as a driver of senescence and aging is de-
bated [20].

Even less is known about endogenous DNA damage as a potential
driver of senescence and aging. The vast majority of evidence im-
plicating DNA damage in senescence comes from experiments im-
plementing very high doses of environmental genotoxins such as io-
nizing radiation, doxorubicin, etoposide or cisplatin [19,21,22]. Also of
note, all genotoxins damage not only DNA, but also all cellular nu-
cleophiles including phospholipids, proteins and RNA. Thus, it remains
unknown whether physiological levels of spontaneous DNA damage is
sufficient to drive cellular senescence.

A major source of endogenous DNA damage is reactive oxygen
species (ROS) produced during mitochondrial-based aerobic metabo-
lism (e.g. the superoxide anion (O2

•-) and the hydroxyl radical (•OH)
produced from O2

•-or H2O2 via the Fe2+-dependent Fenton or Haber-
Weiss reaction) [23]. The DNA lesions caused by ROS include oxidized
bases, abasic sites, single-strand breaks and lipid peroxidation-induced
adducts such as interstrand crosslinks [24]. Some mitochondrial-de-
rived ROS, such as H2O2, can diffuse throughout the cell, resulting in
oxidative damage to lipids, proteins, RNA and DNA [25]. Thus, mi-
tochondrial dysfunction, which leads to an increase in ROS production,
was proposed to be central to the aging process [26,27]. However, this
too remains controversial [28].

To address these gaps in knowledge, we utilized a genetic approach
to increase endogenous nuclear DNA damage in mice. ERCC1-XPF is an
endonuclease complex required for nucleotide excision repair, inter-
strand crosslink repair and the repair of a subset of DNA double-strand
breaks [29]. Mutations that mediate reduced expression of this enzyme
cause accelerated aging in humans and mice [29]. ERCC1 is required to
stabilize XPF in vivo [30]. Therefore, Ercc1-/Δ mice, with one knock-out
and one hypomorphic allele of Ercc1 have 5–10% of the normal

complement of ERCC1-XPF [31]. Genetic depletion of DNA repair me-
chanisms does not increase the amount of damage incurred, it simply
accelerates the pace at which damage triggers a demonstrable physio-
logical impact, affording an opportunity to investigate the role of en-
dogenous nuclear DNA damage in driving senescence.

Here, we demonstrate that Ercc1−/Δ mice accumulate oxidative
DNA damage and senescent cells more rapidly than age-matched wild-
type (WT) controls, yet comparable to WT mice over two years of age.
Surprisingly, we found that Ercc1−/Δ mice are also under increased
oxidative stress. Increased ROS production and decreased antioxidant
buffering capacity contributed to the oxidative stress, which was also
observed in aged WT mice. Treatment of Ercc1-/Δ mice with a mi-
tochondrial-targeted radical scavenger (XJB-5–131) was sufficient to
suppress oxidative DNA damage, senescence and age-related patholo-
gies. These data demonstrate that damage of the nuclear genome
arising spontaneously in vivo is sufficient to drive cellular senescence.
Our data also demonstrate that endogenous DNA damage, as a primary
insult, is able to trigger increased reactive oxygen species (ROS) and
further oxidative damage in vivo.

2. Methods

2.1. Chemicals and reagents

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO)
unless otherwise specified. Primary antibodies used for immunoblotting
were purchased from Abcam (Cambridge, MA) unless indicated.

2.2. Animal care and experimentation

All animal studies were conducted in compliance with the U.S.
Department of Health and Human Services Guide for the Care and Use
of Laboratory Animals, and were approved by the Scripps Florida or
University of Pittsburgh Institutional Animal Care and Use Committee.
Ercc1-/Δ mice were bred and genotyped as previously described [32].
P16-luciferase reporter mice were obtained from Ohio State University
[10] and bred to create Albino C57BL/6 p16luc/+;Ercc1+/- and FVB/n
p16luc/+;Ercc1+/Δ mice. These mice were further crossed to create f1
p16luc/luc;Ercc1-/Δ mice with white fur for imaging. All animals were
genotyped from an ear punch by TransnetYX (Cordova, TN).

2.3. DNA extraction and measurement of cyclopurine DNA lesions

DNA was isolated using a high-salt extraction method [33] from
cultured MEFs or liver tissue, which was pulverized with a mortar and
pestle under liquid nitrogen. Cyclopurine lesions were measured by LC-
MS/MS/MS using an LTQ linear ion trap mass spectrometer using our
recently described conditions with some modifications [34]. Nuclease
P1 (0.1 U/μg DNA), phosphodiesterase 2 (0.000125 U/μg DNA), 20
nmol of erythro-9-(2-hydroxy-3-nonyl) adenine EHNA and a 20-μL so-
lution containing 300mM sodium acetate (pH 5.6) and 10mM zinc
chloride were added to isolated nuclear DNA. In this context, EHNA
served as an inhibitor for deamination of 2’-deoxyadenosine to 2'-
deoxyinosine induced by adenine deaminase [34]. The above digestion
mixture was incubated at 37˚C for 48 h. To this mixture were then
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added alkaline phosphatase (0.05 U/μg DNA), phosphodiesterase 1
(0.00025 U/μg DNA) and 40 μL of 0.5M Tris-HCl buffer (pH 8.9). The
digestion was continued at 37˚C for 2 h and subsequently neutralized by
addition of formic acid. To the mixture were then added appropriate
amounts of uniformly 15N-labeled standard lesions, which included R-
cdG, S-cdG, R-cdA and S-cdA. The digestion mixture was subsequently
extracted twice with chloroform. The resulting aqueous layer was
subjected to off-line high performance liquid chromatography (HPLC)
separation for the enrichment of the lesions under study, following our
previously described procedures [34]. The LC-MS/MS/MS experiments
were conducted using an LTQ linear ion trap mass spectrometer using
our recently described conditions with some modifications [34].
Briefly, a 0.5×150mm Zorbax SB-C18 column (particle size, 5 µm,
Agilent) was used for the separation of the above-enriched lesion
fractions, and the flow rate was 4.0 μL/min. A solution of 0.1% (v/v)
formic acid in water (solution A) and a solution of 0.1% (v/v) formic
acid in methanol (solution B) were used as mobile phases for the ana-
lyses of all four cyclopurine lesions, i.e. the (5′R) and (5′S) diaster-
eomers of cdA and cdG, after HPLC enrichment, and a gradient of 5min
0–20% B, 30min 20–80% B, and 5min 80% B was employed for the
separation.

2.4. Fluorescence in situ hybridization for telomere-specific γH2AX foci

Primary murine embryonic fibroblasts (MEFs) were fixed with 2%
paraformaldehyde for 15min followed by permeabilization (0.2%
Triton X-100in PBS) for 15min. Cells were then blocked (2% BSA, 20%
goat serum in PBS) for 2 h. Cells were immuno-stained with mouse anti-
γH2AX monoclonal antibody (1:500; Upstate, Billerica, MA) overnight
and goat anti-mouse 594 secondary antibody (1:1000) for 1 h. Cells
were then fixed in 2% paraformaldehyde for 5min. Samples were de-
hydrated in 70%, 95%, 100% ethanol (5min each) and then denatured
for 10min at 80 °C in hybridization solution (70% deionized for-
mamide, 10% NEN blocking reagent [Roche], 0.1M Tris-HCl [pH 7.4],
MgCl2 buffer [82mM NaH2PO4, 9mM citric acid, 20mM MgCl2], and
0.5 µg/mL Cy3-OO-(CCCTAA)3 PNA probe (Panagene, South Korea).
After 2 h hybridization at room temperature, the samples were washed
twice with 70% deionized formamide in 10mM Tris-HCl, pH 7.2.
Samples were counterstained with DAPI, mounted onto slides with
Gelvatol and images were acquired with a Nikon A1 confocal micro-
scope (Nikon Instruments, Inc.).

2.5. Senescence-associated β-galactosidase (SA-β-gal) staining of tissue

Fresh tissues were fixed in 10% neutral buffered formalin (NBF) for
3–4 h and then transfered to 30% sucrose overnight. Tissues were then
embedded in cryo-embedding media (OCT) and cryosectioned at 6 µm
for SA-β-gal staining (pH 5.8) at 37oC for 16–24 h in SA-β-gal staining
solution (pH 6.0; 40mM citric acid in sodium phosphate buffer, 5 mM
K4[Fe(CN)6] 3H2O, 5mM K3[Fe(CN)6], 150mM sodium chloride, 2 mM
magnesium chloride and 1mg/mL X-gal dissolved in N,N-di-
methylformamide).

2.6. IVIS in vivo imaging detection of luciferase activity

Isoflurane-anesthetized mice were injected intraperitoneally with D-
luciferin substrate (Caliper Life Sciences, Hopkinton, MA; 15mg/mL in
PBS) and were imaged by using an IVIS Lumina (Caliper Life Sciences)
as previously described [10].

2.7. RNA isolation and qPCR

Tissues were harvested from euthanized animals and snap frozen in
liquid nitrogen. Tissues were homogenized using FastPrep-24 homo-
genizer (MP Biomedicals, Solon, OH) and total RNA was isolated using
Trizol, according to manufacturer’s specifications (Thermo Fisher,

Waltham, MA). Total RNA was quantified using a Nanodrop spectro-
photometer (Thermo Fisher) and 1 μg of total RNA was used to generate
cDNA with the Transcriptor First Strand cDNA synthesis kit (Roche,
Basel Switzerland) according to the manufacturer’s specification. Gene
expression changes in p16 was quantified by qPCR reactions using 20 μL
reaction volumes using a StepOne thermocycler (Thermo Fisher) with
input of 100 ng cDNA per reaction. Reactions were performed in du-
plicate (n= 4–12 mice per group). Data was analyzed by ΔΔCt method
and expression was normalized to Gapdh. Primer sequences are as fol-
lows: Cdkn2a (p16) Fwd 5’- CCCAACGCCCCGAACT-3’, Cdkn2a (p16)
Rev 5’- GCAGAAGAGCTGCTACGTGAA-3’; Gapdh Fwd 5’-AAGGTCATC
CCAGAGCTGAA-3’, Gapdh Rev 5’-CTGCTTCACCACCTTCTTGA-3’.

2.8. Biochemical detection of superoxide

Fresh murine tissue slices were incubated in a 30 µM solution of
hydroethidine (HE) in PBS for 45min at 37oC in the dark. The slices
were washed with iced cold PBS and placed into a 1.5mL Eppendorf
tube and immediately frozen by immersion in liquid nitrogen.
Superoxide levels were measured by the presence of 2-hydroxyethidium
(2-OH-E+) using a HPLC system equipped with electrochemical de-
tector as previously reported [35,36]. Briefly, the separation of the
oxidized products of hydroethidine (HE) was performed using an ether-
linked phenyl column (Phenomenex, 100 X 4.6 mm, 2.6 µm) and a
gradient elution method using two mobile phases with an increasing
fraction of acetonitrile (from 25% to 60% over 10min). The presence of
superoxide was also confirmed by electron paramagnetic resonance
(EPR) spectroscopy spin-trapping of a 1-hydroxy-3-methoxy-carbonyl-
2,2,5,5-tetramethylpyrrolidine (CMH) (Noxygen Science Transfer and
Diagnostics, Elzach, Germany) superoxide-sensitive probe and analyzed
using a temperature- and O2-controlled Bruker EPR (Millerica, MA) at
37oC as described [37]. n= 3–9 mice per genotype.

2.9. Immuno-spin trapping of biomolecular free radicals

Briefly, mice were injected with 500mg/kg 5,5-dimethyl-1-pyrro-
line N-oxide (DMPO, Dojindo, Japan) at 24, 12 and 6 h prior to eu-
thanasia. Tissues were fixed in 2% PFA in PBS for 1 h then submerged in
30% sucrose for 24 h, with several solution exchanges. Tissues were
cryopreserved in 2-methylbutane then sectioned on a cryostat (Leica
Biosystems, Richmond, IL). Sections were stained with polyclonal anti-
DMPO (ALX-210–530-R050; Enzo Life Sciences) followed by secondary
antibody (Alexa Fluor 488 anti-rabbit IgG; Life Technologies). Tissues
were counterstained with DAPI to detect nuclei and for actin (fluor-
conjugated phalloidin) to reveal tissue architecture. For liver, 9 x 9
image sections were stitched together from multiple images with 10%
stitching overlap using the Nikon NIS-Elements software. 3–5 mice
were used per group.

2.10. Lipid peroxidation

4-Hydroxynonenal-protein adducts, which are by-products of lipid
peroxidation, were measured in murine liver using the OxiSelect HNE
Adduct Competitive ELISA kit (Cell Biolabs, San Diego, CA). Livers ly-
sates were prepared in RIPA buffer and normalized based on protein
concentration. µg of total protein was used for each assay. Four liver
samples were measured in duplicate for each group except old WT mice
(n= 3–4). Measurements were taken using an EnVision plate reader
(Perkin Elmer, Waltham, MA).

2.11. Xanthine oxidase activity

Xanthine oxidase activity was measured as previously described
[38]. Briefly, liver samples (50mg) from 7 to 9 mice per group were
homogenized in ice-cold potassium phosphate buffer (50mM, pH 7.4)
and incubated in the presence of 200 µM xanthine and 100 µM oxonic

A.R. Robinson et al. Redox Biology 17 (2018) 259–273

261



acid for 60min at 37oC (with and without 200 µM allopurinol). Accu-
mulation of uric acid over this time (above that observed in the pre-
sence of allopurinol) frame was assessed via reverse phase HPLC cou-
pled to an electrochemical detector (ESA CoulArray, Chelmsford, MA),
(1 Unit = 1 µmole urate/min). Similarly, XO activity was measured
from the serum of mice (n= 3–9).

2.12. NADPH oxidase activity

Tissue O2
•- production was calculated from the initial linear rate of

SOD-sensitive cytochrome c reduction quantified at λ=550 nm.
Briefly, homogenates of frozen liver samples were resuspended in
Oxidase Assay Buffer (65mM sodium phosphate buffer (pH 7.0), 1 mM
EGTA, 10 μM FAD, 1mM MgCl2, 2 mM NaN3, 300 U/mL catalase, and
0.2 mM cytochrome c), in the presence or absence of superoxide dis-
mutase (150 U/mL). After 5min baseline measurement, NADPH
(180 μM) was added and O2

•- production was measured at 550 nm using
a Biotek Synergy 4 hybrid multimode microplate reader. 6–13 mice per
group were used. Data are expressed as fold change from WT.

2.13. Mitochondrial respiration

Mitochondrial respiration in isolated liver mitochondria was mea-
sured by the oxygen consumption rate (OCR) using a Seahorse XF96
Extracellular Flux Analyzer (Agilent Seahorse, Santa Clara, CA). Liver
mitochondria were isolated as described [39]. 150 μL suspension of
liver mitochondria (6 µg protein/well) was plated on a pre-chilled
Seahorse PS 96-well microplate reader. The plate was centrifuged at
3220×g for 50min at 4 °C, subsequently incubated in 37 °C (without
CO2) for 15min then transferred to the XF flux analyzer for respiration
measurement. The measurement cycle consisted of a 3min mixing time
and a 4min time point. After three basal measurements in the presence
of complex I substrate pyruvate (5 mM), 150 μM ADP, 2 µg/mL oligo-
mycin (inhibitor of ATP synthase), 4 µM carbonylcyanide p-tri-
fluoromethoxyphenylhydrazone (FCCP; an optimized concentration to
give maximum respiratory capacity), 2 µM rotenone and 2 µg/mL an-
timycin A were auto-injected into the experimental wells, and another
three measurement cycles were performed. Each experimental point is
an average of a minimum of three replicate wells on four mice per
group. State III and maximal respiration were calculated as described
[40].

2.14. Metabolite extraction

Liver samples were weighed (10mg) from 12-week-old WT (n=7),
old WT (120–136-week-old) (n= 7) and 12-week-old Ercc1-/Δ (n= 6)
mice. Samples were homogenized in 400 μL methanol/water (80:20 v/
v) with 1mm glass beads (Biospec, Bartlesville, OK, USA) in 1.5 mL
glass vials. A Minilyse homogenizer (Bertin Technologies, Montigny le
Bretonneux, France) was used for 30 s at 3000 rpm. The samples were
sonicated for 15min and stored overnight at -20oC. The samples were
centrifuged at 15,000×g for 15min at 4oC. The supernatant was
transferred to 1.5 mL glass vials and stored at -20oC until later use. The
pellet was resuspended in 600 μL acetone and homogenized again for
10 s, and stored at -20oC overnight. The samples were centrifuged at
15,000×g for 15min at 4oC and the supernatant pooled with pre-
viously retained supernatant. The samples were dried down in a
speedvac and resuspended in 100 μL acetonitrile/water (50/50 v/v),
sonicated for 5min, centrifuged for 15min at 15,000×g, 4oC and
transferred to autosampler vials for storage at -80oC until use.

2.15. Global metabolomic analysis

Analyses were performed using a high-performance liquid chro-
matography (HPLC) system (1200 series, Agilent Technologies) coupled
to a 6550 ifunnel quadrupole time-of-flight (Q-TOF) mass spectrometer

(Agilent Technologies). Samples were injected (8 μL) onto a Luna
Aminopropyl, 3 µm, 150mm×1.0mm I.D. column (Phenomenex,
Torrance, CA) for hydrophilic interaction liquid chromatography
(HILIC) analysis. Pooled samples were injected every three samples and
a blank after every samples for quality control. The standard mobile
phase was A =20mM ammonium acetate and 40mM ammonium hy-
droxide in 95% water and B =95% acetonitrile in ESI negative mode.
The linear gradient elution from 100% B (0–5min) to 100% A
(50–55min) was applied at a flow rate of 50 μL/min with a 10min post-
run. ESI source conditions were set as following: gas temperature 200˚C,
drying gas 11 L/min, nebulizer 15 psig, sheath gas temperature 300˚C,
sheath gas flow 9 l/min, fragmentor 360 V, nozzle voltage 500 V, and
capillary voltage 2500 V. The instrument was set to acquire over the m/
z range 60–1200, with the MS acquisition rate of 2 spectra/s. For the
MS/MS of selected precursors the default isolation width was set as
medium (~4m/z), with a MS acquisition rate at 3 spectra/s and MS/MS
acquisition at 3 spectra/s. The collision energy was fixed at 20 eV. LC/
MS data were processed using XCMS Online [41]. Unpaired parametric
tests were carried out. Features were listed in a feature list table and as
an interactive cloud plot, containing their integrated intensities (ex-
tracted ion chromatographic peak areas) observed fold changes across
the two sample groups, and p-values for each sample [42]. Integration
of METLIN to XCMS Online allowed for putative identification of me-
tabolites. Identifications were then made by comparing retention times
and tandem MS fragmentation patterns to the sample and standard
compounds (purchased from Sigma Aldrich, St. Louis, MO).

2.16. Liver proteomic analysis

Male CB6f1, C57BL/6 and female C57BL/6: FVB f1 WT livers were
harvested at 5–8 months and 30–32 months, as well as male and female
C57BL/6: FVB F1 Ercc1−/Δ livers at 4 months (n= 4–8). Livers were
homogenized in 125mM Tris-HCl, pH 7.6, using a MP Biomedicals Fast
Prep 24, Lysing Matrix D. Lysates were brought to 100mM Tris-HCl, pH
7.6, 4% sodium dodecyl sulfate, and 100mM dithiothreitol and heated
to 99˚C for 5min. Cooled samples were protein assayed using 660 nm
Protein Assay with Ionic Detergent Compatibility Reagent (Pierce,
Rockford, IL). Equal protein amounts were dialyzed, alkylated, and
digested using the FASP methodology [43,44]. Briefly, samples were
buffer exchanged into 8M Urea, alkylated with 20mM iodoacetamide,
buffer exchanged into ammonium bicarbonate, and digested with mass
spec sequencing grade trypsin (Promega, Madison, WI) in a Millipore
Microcon Ultracel YM-30 microcentrifuge filter [45]. Collected peptides
were desalted using Discovery DSC-18 vacuum manifold columns with
a 50mg bed weight (Supelco, Bellefonte, PA) [46]. Desalted peptides
were dried down in a centrifugal concentrator with inline cold trap
(Labconco, Kansas City, MO) [47]. Desalted peptides were resuspended
at 1mg/mL in 0.1% formic acid in mass spectrometry grade water
(Burdick & Jackson, Muskegon, MI).

Desalted peptides were separated across a hydrophobicity gradient
of 3–32% acetonitrile over 60min at 300 nL/min using a Waters
NanoACQUITY (ultra-high pressure liquid chromatography) UPLC on a
25 cm, 75 µm ID, 5 µM reversed phase C18 heated PicoChip column
(New Objective) in line with a high resolution Fourier transform
Orbitrap XL mass spectrometer (Thermo Fisher Scientific). A top 4 data
dependent acquisition was employed with a 60,000 resolution full scan
and four subsequent low resolution MS/MS identification scans per-
formed in the ion trap.

Mass spectrometric raw files were translated and analyzed using the
CHORUS cloud computing label free quantitation analysis suite (chor-
usproject.org). Briefly, chromatographic peaks, features, are separated
from noise and placed into appropriate isotope groups before alignment
across all samples and quantification using label free differential mass
spectrometry [48,49]. Identification is performed using the Comet and
Percolator MS/MS identification engines compared to the Uniprot re-
ference data set for Mus musculus, generating identification and
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quantification data for all features [50,51].
Statistical analysis was performed on all identified features by re-

jecting any feature not found in at least 75% of samples following
outlier removal. Feature level data was brought to protein level by

taking the median level of all unmodified, unique peptides of a given
protein per sample, with a minimum of two unique peptides per pro-
tein. A two-tailed Student’s t-test was performed to establish statistical
significance for all proteins identified.

(caption on next page)
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2.17. Catalase activity

Catalase activity in liver tissue was determined as previously re-
ported [52]. 50 μg of liver lysate from each mouse were used and
analyzed in duplicate. Detection of peroxide (Fisher Scientific, Pitts-
burgh, PA) at 240 nm was performed using a Cary 300 BIO UV–VIS
spectrophotometer (Varian, Palo Alto, CA) at 30 s intervals for a total of
1min. Catalase activity per milligram of protein (k/mg) was quantified
using the following formula: k/mg = [3 ln (Absinitial/Absfinal)] /[milli-
grams of protein * time] with 3–5 mice were used per group.

2.18. Superoxide dismutase activity

SOD activity (mitochondrial and cytoplasmic) was quantified using
the Superoxide Dismutase Assay Kit (Cayman) per the manufacturer’s
instructions. All liver samples were normalized based on protein con-
centration with n=3 per group.

2.19. Glutathione analysis

Livers were harvested from euthanized mice, fixed in 5% sulfosa-
licylic acid and extracts were prepared by homogenization in MES
buffer (0.2M 2-(N-morpholino) ethanesulphonic acid, 0.05M phos-
phate and 1mM EDTA, pH 6.0) to prevent post-mortem oxidation of
glutathione [53]). Samples were normalized by protein concentration
and analyzed for concentration of total GSH and GSSG using a Glu-
tathione Assay Kit (Cayman Chemicals, Ann Arbor, MI) per the manu-
facturer’s specifications. Sample absorbance was measured at 405 nm
using a plate reader. Equation to determine reduced GSH was [Reduced
GSH] = [Total GSH]-[GSSG], and ratio was reported as [Reduced
GSH]/[GSSG] [54]. n= 3–14 mice per age/genotype.

2.20. Immunoblotting

Liver and kidney samples from 18-week-old Ercc1−/Δ and WT mice
(n=5) were homogenized in RIPA buffer (Pierce, Rockford, IL) with
protease inhibitor cocktail (Roche, Indianapolis, IN). Mitochondrial
extracts were prepared using Mitochondria Isolation Kit (Pierce) per the
manufacturer’s specifications. Samples were separated on 4–20%
polyacrylamide gel (Bio-Rad, Hercules, CA), transferred to ni-
trocellulose membrane, blocked and blotted with anti-PCNA (PC10,
Santa Cruz Biotechnology, Santa Cruz, CA), anti-ERCC1 (D-10, Santa
Cruz Biotechnology), anti-COXIV (Abcam, Cambridge, MA), anti-XPF
(SPM228, Novus Biologicals, Littleton, CO) or anti-GAPDH, anti-
MnSOD, anti-CuZnSOD, anti-catalase (3H3L29), anti-XO, and anti-
rabbit secondary (all from Life Technologies, Carlsbad, CA) then vi-
sualized with ECL reagent (Pierce). Films exposed to membrane were
imaged with ImageJ (NIH, Bethesda, MD). GAPDH was used as a
loading control.

2.21. Chronic treatment of mice with XJB-5–131

The Ercc1-/Δ mice were given intraperitoneal injections of 2mg/kg
XJB dissolved in sunflower oil (S5007 Sigma-Aldrich, St. Louis, MO) or

an equal volume of vehicle only (sunflower oil) three times per week,
beginning at five weeks of age, by an investigator blinded to the
treatment group. Whenever possible, littermate pairs of Ercc1-/Δ mice
were used, with one mouse in each treatment group, to minimize
variability. The mice were weighed twice a week and monitored for the
onset of age-related symptoms, including dystonia, trembling, ataxia,
priapism and urinary incontinence (neurodegenerative symptoms),
hind-limb muscle wasting, lethargy (reduced spontaneous activity) and
kyphosis (hunched posture). Data from littermate pairs were evaluated
to determine the fraction of symptoms delayed in the mouse treated
with XJB vs. its sibling treated with vehicle only using a paired
Student’s t-test. All mice were euthanized at 20 weeks of age and their
tissues were isolated for pathological analysis.

2.22. Micro-computed tomography measurement of bone density

μCT of spines was acquired as previously described [55] using a
VivaCT 40 (Scanco USA Inc.) with 15-μm isotropic voxel size resolution,
55 kVp of energy, and 145 μA of current. After the acquisition of
transverse 2-dimensional image slices, 3-dimensional reconstruction of
the lumbar vertebrae was performed using a constant threshold value of
235, which was selected manually for the bone voxels by visually
matching the threshold areas to the gray-scale images.

2.23. Statistics

The mean and standard deviation or standard error of the mean
were calculated for all experimental groups and analyzed using un-
paired two-tailed Student’s t-tests, or one-way or two-way ANOVA or
Tukey's test for multiple comparisons using GraphPad Prism 6.

3. Results

3.1. Ercc1−/Δ mice have accelerated accumulation of spontaneous
oxidative DNA damage

To test conventional wisdom that nucleotide excision repair (NER)
is exclusively nuclear and not a mitochondrial DNA repair mechanism
[56], ERCC1 and XPF protein levels were measured in fractionated
murine liver lysates (Fig. 1A). Both proteins were detected in the nu-
clear but not mitochondrial fractions, establishing their role in pro-
tecting the nuclear genome, exclusively. Cyclopurines (cPus) are DNA
lesions generated by endogenous reactive oxygen species [57], which
are repaired by NER [58]. Thus, cPus are expected to be increased in
Ercc1−/Δ mice compared to age-matched WT animals. LC-MS/MS/MS
was used to measure the four cPus lesions (R-cdG, S-cdG, R-cdA and S-
cdA) in kidney tissue of mice (Supplemental Fig. 1) [59]. At two months
of age, the levels of cPu were not elevated in Ercc1−/Δ mice (Fig. 1B).
By five months of age, however, all four lesions were significantly in-
creased in Ercc1−/Δ compared to WT mice. Notably, S-cdG, R-cdA and
S-cdA also were significantly increased in old WT mice compared to
young animals. Furthermore, adduct levels were equivalent in 5-month-
old Ercc1−/Δ and 3-year-old WT mice. This indicates that Ercc1−/Δ mice
have an increased burden of endogenous DNA damage than age-

Fig. 1. DNA repair deficient Ercc1-/Δ mice accumulate oxidative damage and senescent cells faster than WT mice. (a) Immunoblot detection of ERCC1 and XPF in
fractionated liver lysates from two WT mice. COXIV was used as a loading control for the mitochondria (Mito) and PCNA was used for the nuclear (Nuc) fraction. (b)
Levels of 8,5’-cyclopurine-2’-deoxynucleosides in DNA isolated from murine kidney. Graphed are the mean and SD from n=3 mice per group. *p < 0.05,
**p < 0.01, ***p < 0.001 calculated by two-way ANOVA. Data are derived from Wang et al. [59]. (c) Staining for SA-β-gal activity on kidney and liver from
Ercc1-/Δ mice and aged WT mice compared to adult WT mice. Images were captured at 20X magnification. (d) Representative images of p16-luciferase signal in age-
matched WT and a DNA repair-deficient mouse. (e) Total body luciferase activity in p16luc/luc;Ercc1-/Δ (blue) and p16luc/luc (red) mice with increasing age. Dots
represent individual animals. Black bars indicate the mean± standard deviation. p values were calculated using a two-way ANOVA. ***p < 0.001,
****p < 0.0001. * over the blue dots indicate significant differences between the WT and Ercc1-/Δ mice. * over the black bars indicate a significant difference
between Ercc1-/Δ of different age groups. (f) qPCR detection of p16Ink4a expression in liver (n= 6–12), kidney (n=4–6) and spleen (n= 7–10) of Ercc1-/Δ mice
(blue), age-matched WT mice (red) and old WT mice (green). Values represent the mean± SD, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
determined by one-way ANOVA with Tukey's test.
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matched repair-proficient animals and that they accumulate sponta-
neous DNA damage faster than WT animals.

3.2. Ercc1−/Δ mice have accelerated accumulation of senescent cells

To determine if endogenous DNA damage is sufficient to drive cel-
lular senescence in vivo, multiple markers of senescence were measured
in tissues of Ercc1-/Δ and WT mice of various ages. Senescence-asso-
ciated β− galactosidase (SA-β-gal) activity was increased in 5-month-
old Ercc1-/Δ mouse kidney and liver compared to WT littermates
(Fig. 1C). Two-year-old WT mice also had increased SA-β-gal activity in
these tissues relative to young animals. The level of p16Ink4a expression
was measured using a p16Ink4a-luciferase transgenic reporter (Fig. 1D)
[10]. Total p16Ink4a-luciferase expression was modestly but significantly
increased in mutant animals at weaning (Fig. 1E). The signal increased
steadily as the mutant animals aged, in particular, after 8 weeks of age.
Notably, the signal level seen in the DNA repair-deficient mice did not
exceed that of older WT mice. As both WT and Ercc1-/Δ mice aged, the
heterogeneity in signal between animals increased dramatically, as
previously reported for WT mice in a different genetic background [10].

Increased p16Ink4a expression was validated by qPCR (Fig. 1F).
p16Ink4a mRNA was significantly greater in the liver, kidney and spleen
of Ercc1-/Δ mice compared to WT age-matched controls. p16Ink4a ex-
pression in 3–4 month-old Ercc1-/Δ mice was comparable to that of 2-
year-old WT mice. Taken together, these data document the premature
accumulation of senescent cells in DNA repair-deficient Ercc1-/Δ mice.
Importantly, ERCC1-XPF-deficient human and murine cells do not show
accelerated telomere attrition [60]. To confirm the absence of telomere
dysfunction, we measured telomere damage-induced foci [61] in
Ercc1-/- and WT mouse embryonic fibroblasts (Supplemental Fig. 2).
Notably, the number of γH2AX foci was significantly increased in
Ercc1-/- cells compared to WT, as expected for DNA repair-deficient
cells. However, γH2AX foci at telomeric DNA was significantly lower in
Ercc1-/- cells, confirming prior studies [60]. These data rule-out telo-
mere dysfunction as the driver of senescence in the absence of ERCC1-
XPF. This suggests that it is unrepaired, endogenous DNA damage that
drives cellular senescence in mammalian tissues.

3.3. Ercc1-/Δ mice demonstrate elevated ROS abundance

The presumption is that Ercc1-/Δ mice have increased oxidative DNA
damage because of their defect in NER. However, it is also possible that
Ercc1-/Δ mice are under increased oxidative stress. To test this, we
measured cPus in liver tissue of age-matched Ercc1-/Δ, WT and Xpa-/-

mice. The latter are completely deficient in nucleotide excision repair of
cyclopurine (cPu) lesions. Xpa-/- mice also show no signs of accelerated
aging [62]. Notably, all four cPus were significantly elevated in liver of
Ercc1-/Δ mice compared to WT, but cPus were not elevated in Xpa-/-

mouse liver (Fig. 2A). This indicates that lack of DNA repair does not
adequately explain the increased oxidative DNA damage in Ercc1-/Δ

mice.
To determine if the Ercc1-/Δ mice are under increased oxidative

stress, superoxide anion (O2
•-) production was measured in fresh renal

and liver tissue by quantification of 2-OH-E+. Oxidation of hydro-
ethidine to its O2

•--specific product, 2-hydroxyethidium (2-OH-E+) was
assessed by HPLC coupled to electrochemical detection and validated
by electron paramagnetic resonance (EPR) spin trapping [36].

Superoxide levels were indeed significantly greater in Ercc1−/Δ mouse
tissue compared to age-matched controls (Fig. 2B). Interestingly, O2

•-

levels were equivalent in 4–5-month-old Ercc1−/Δ and 24–30-month-
old WT mice, extending the parallels between normal and accelerated
aging.

The presence of elevated endogenous ROS levels was confirmed
using a second, in vivo method whereby free radicals are detected by
immuno-spin trapping with the nitrone EPR spin trap 5,5-dimethyl-1-
pyrroline-N-oxide (DMPO). Renal and liver tissue of 5-month-old
Ercc1-/Δ mice had increased DMPO adducts compared to age-matched
WT mice (Fig. 2C and Supplemental Fig. 3). Similarly, DMPO signal
intensity was elevated in naturally aged WT mouse liver and kidney
compared to 5-month-old WT mice.

As a product of lipid peroxidation, 4-hydroxy-2-nonenal (HNE)
chemically modifies proteins and DNA [63] and thus is frequently used
as a measure of oxidative stress [64]. HNE-protein adducts were sig-
nificantly elevated in liver lysates of Ercc1−/Δ and old WT mice com-
pared to young adult WT mice (Fig. 2D). Cumulatively, these data
provide multiple lines of evidence that Ercc1−/Δ mice are under in-
creased oxidative stress, analogous to what occurs with normal aging.

3.4. Increased ROS production as a source of oxidative stress

We next examined potential source(s) of increased ROS abundance.
The enzymatic activity of xanthine oxidase (XO), a key endogenous
enzymatic a source of O2

•- and H2O2 [65], was significantly increased in
the liver of 4-month-old Ercc1−/Δ mice compared to age-matched WT
animals (Fig. 3A). Aged WT mice also demonstrated elevated liver XO
activity as previously reported [66]. Notably, XO activity was similar in
the progeroid and aged WT mice. Ercc1−/Δ mice also demonstrated
elevated serum XO activity compared to WT littermate controls
(Fig. 3B). The activity of circulating XO was not elevated at 1 month of
age but was increased by 3 months when the mice display aging phe-
notypes [55]. XO activity was not significantly increased in serum of
aged WT mice, in contrast to a previous report [66]. NADPH oxidase
(NOX) activity, another key endogenous source of O2

•- and H2O2, was
significantly elevated in the liver tissue of Ercc1−/Δ and old WT mice
compared to young WT animals (Fig. 3C). These data indicate that the
enhanced O2

•- levels detected in liver and kidney of the progeroid and
aged WT mice is likely caused, at least in part, by increased enzymatic
production.

In addition, a shift towards increased oxidative phosphorylation and
oxygen consumption has been reported with aging [67], which is an-
other potential source of increase O2

•- production [68]. To determine if
this was also the case in the progeroid Ercc1-/Δ mice, we measured
mitochondrial respiration in organelles isolated from the liver of adult
mutant mice and their littermate controls (Fig. 3D). Indeed, ADP-sti-
mulated respiration and maximum respiration was significantly higher
in the Ercc1−/Δ mice compared to age-matched controls; consistent
with previous findings in cells from DNA repair-deficient mice [69].
This metabolic shift could serve as another source of increased O2

•-

production by mitochondria [70].

3.5. Decreased antioxidant activity and levels contribute to excess ROS

Several approaches were used to measure antioxidant status of
progeroid and aged mice. Untargeted mass spectrometry (MS)-based

Fig. 2. Increased oxidative stress in tissues of progeroid Ercc1-/Δ mice and old WT mice. (a) Levels of four cyclopurine lesions (R-cdG, S-cdG, R-cdA, S-cdA) measured
in liver tissues of 4-month-old WT, Xpa-/- and Ercc1-/Δ mice (n= 3 per genotype) by LC-MS/MS/MS. (b) Detection of endogenous superoxide production by
quantifying 2-OH-E+ by HPLC/electrochemical analysis in DHE-treated kidney (n= 3–7) and liver (n= 6–9 animals per genotype/age). (c) Representative images
from immuno-spin trapping of endogenous, biomolecular free radicals with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The level of oxidant stress was determined by
immunodetection of DMPO-adducted biomolecules in renal and liver sections. DMPO staining is illustrated in red, actin in green to illustrate tissue architecture and
DAPI in blue to highlight cell nuclei. (d) Lipid peroxidation as measured by quantitation of 4-hydroxynonenal protein adducts via ELISA (n=3–4 mice per group).
For all panels, values represent the mean± SD, *p < 0.05, **p < 0.01, ***p < 0.001 determined by one-way ANOVA with Tukey's test.
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metabolomics on liver extracts comparing 3-month-old WT and Ercc1−/

Δ mice revealed 7935 aligned features, of which 118 were significantly
changed between the two groups. Comparison of liver tissues from 3-
month-old and 2.5-year-old WT mice revealed 6812 aligned features, of
which 69 were significantly changed between the two groups.
Metabolites were identified from both analyses using a combination of
MS/MS with spectrum matching on the METLIN database, and con-
firmed using authentic standards. One of the key nodes identified by
metabolomics as significantly altered with accelerated and normal
aging was glutathione metabolism (Fig. 4A), a key antioxidant and
index of oxidative stress [71].

Differential MS was used for proteomics analysis to identify redox-
related proteins significantly altered in the livers of 3–4 month-old
progeroid Ercc1−/Δ mice and old WT mice (> 2 years-old) vs. adult WT
mice. Expression of catalase, SOD1 (CuZnSOD) and SOD2 (MnSOD)
were significantly reduced in Ercc1−/Δ and old WT mice compared to
young adult WT mice (Fig. 4B). In fact, numerous proteins affecting
redox status were identified as altered in mutant mice, including aco-
nitase 1, cytochrome c oxidase, ATP citrate lyase and microsomal glu-
tathione s-transferase 1 (Supplemental Fig. 4). A very similar pattern of
expression changes occurred in old WT mice, relative to younger ani-
mals. The MS data were validated by immunodetection of several an-
tioxidants by immunoblot (Supplemental Fig. 5).

To validate the predictions arising from the omics studies, activity
of key antioxidants was measured. In liver tissue, catalase activity was
significantly decreased in Ercc1−/Δ mice compared to age-matched
controls (Fig. 4C). Interestingly, in young mutant animals (1 month-
old), catalase activity was normal, but then declined progressively over
the rest of their lifespan, reaching a level in the 4–6 month-old Ercc1−/Δ

mice comparable to that of 2.5-year-old WT mice. SOD1 (CuZnSOD-
cytosolic) and SOD2 (MnSOD-mitochondrial) activity in Ercc1−/Δ was
similar to WT mice until they reached 4–5 months of age whereby the

enzymatic activity of CuSOD and MnSOD were significantly lower than
that of age-matched controls (Fig. 4D-E). Similarly, MnSOD activity was
lower in 2.5-year-old WT animals (Fig. 4E).

The reduced form of glutathione (GSH) is the active antioxidant and
becomes oxidized to glutathione disulfide (GSSG). A decreased ratio of
GSH/GSSG is indicative of a state of oxidative stress as well as anti-
oxidant depletion. The GSH/GSSG was significantly reduced in 2
month-old Ercc1−/Δ mice compared to age-matched controls and in-
creased further by 5 months of age (Fig. 4F). In WT mice, the GSH/
GSSG ratio was significantly decreased at one year of age compared to
younger animals, then diminished further by 2 years of age, as pre-
viously reported in numerous tissues of rodents [72]. These data pro-
vide multiple lines of evidence indicating that, in addition to increased
ROS production, there is a significant decline in antioxidant buffering
capacity in Ercc1−/Δ mice, likely contributing to the enhanced levels of
O2

•- detected in liver and kidney of the progeroid mice. The parallels
between the Ercc1−/Δ mice and aged WT mice suggest a role for
spontaneous DNA damage and ROS in normal aging as well.

3.6. A mitochondrial-targeted radical scavenger suppresses senescence

To determine if the increased oxidative stress plays a causal role in
driving senescence, Ercc1-/Δ mice were treated with the mitochondrial-
targeted free radical scavenger XJB-5–131. XJB-5–131 is a conjugate
between the nitroxide TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)
and the mitochondrial-targeting moiety gramicidin S (Supplemental
Fig. 6A) [73]. TEMPO, a stable free radical, is a potent antioxidant due
to its proclivity for mimicking SOD in vitro. XJB-5–131 has several
advantages over other classes of antioxidants, including its capacity to
recycle (Supplemental Fig. 6B), direct acceptance of electrons from the
mitochondria respiratory complexes to prevent production of ROS, plus
SOD-, catalase- and peroxidase-mimetic activities to neutralize existing

Fig. 3. Increased production of ROS in progeroid Ercc1-/Δ mice and old WT mice. Xanthine oxidase (XO) activity was measured in the (a) livers (n= 7–9 per group)
and (b) serum of Ercc1−/Δ and WT mice (n= 3–4 per group) at multiple ages. (c) NADPH oxidase activity was measured in the livers of 4-month-old Ercc1−/Δ and
WT mice as well as 24-month-old aged WT mice (n= 6–13 per group). (d) Measurement of mitochondrial respiration using a Seahorse Bioscience XF Analyzer on
mitochondria isolated from liver tissues of 2 month-old Ercc1−/Δ and WT mice (n= 4 per group). Values represent the mean± SD, *p < 0.05, **p < 0.01 as
determined by one-way ANOVA with Tukey's test or unpaired two-tailed Student’s t-test.
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ROS [73–75]. XJB-5–131 localizes to mitochondria within 1 h in pri-
mary cell cultures [76] and is enriched 600-fold in the mitochondria
fraction of cells over the cytosol [77,78].

Ercc1-/Δ mice were treated with 2mg/kg XJB-5–131 or vehicle
control, delivered by intraperitoneal injection beginning at 5 weeks of
age (Fig. 5A). Chronic exposure of Ercc1-/Δ mice to XJB-5–131 sig-
nificantly reduced the levels of cPus oxidative DNA lesions in liver
tissue (Fig. 5B). XJB-5–131 also suppressed the accumulation of se-
nescent cells. SA-β-gal staining was reduced in the liver of Ercc1-/Δ mice
treated with XJB-5–131 (Fig. 5C). Similarly, XJB-5–131 significantly
reduced the luciferase signal in Ercc1-/Δ;p16Ink4a-luciferase reporter
mice (Fig. 5D). Taken together, these results implicate mitochondria-
derived ROS as driving endogenous DNA damage and senescence in
vivo.

3.7. A mitochondrial-targeted radical scavenger suppresses aging symptoms
and pathology

XJB-5–131-treated mice were monitored daily for the onset of
progeroid symptoms by an investigator blinded to the treatment groups.
Mice treated with XJB-5–131 exhibited a significant delay in the onset
of dystonia and ataxia, as well as kyphosis, reduced spontaneous ac-
tivity and hind-limb muscle wasting (Table 1 and Fig. 5E). Seventy
percent of the age-related symptoms measured were significantly de-
layed in the Ercc1-/Δ mice treated with XJB-5–131 compared to their
vehicle-treated controls. A sixth symptom (urinary incontinence) was
not observed in the 6 male mice in the treatment group, but was seen in
2 of 5 males in the vehicle-only group. XJB-5–131 treatment delayed
the onset of symptoms by 1–2 weeks in Ercc1-/Δ mice which is
equivalent to 5–8 years in humans, based on a median lifespan of 84
years.

Mice from both treatment groups were euthanized at 20 wks of age
for histopathological analyses. At this age, Ercc1-/Δ mice display sig-
nificant levels of age-related hepatic lesions including necrosis and
ballooning degeneration [79]. Both lesions were reduced in Ercc1-/Δ

mice treated with XJB-5–131 compared to those treated with vehicle
only (Fig. 5F). Age-related changes in the kidney, including hyaline
casts, glomerular and tubule-interstitial injury and inflammation were
attenuated by XJB-5–131. The drug also delayed the loss of pancreatic
islets in Ercc1-/Δ mice. The brains of XJB-5–131 treated mice showed
reduced staining for glial fibrillary acidic protein (GFAP), a marker of
neurodegeneration (Fig. 5G). Finally, microcomputed tomography of
the spine revealed a significant reduction in osteoporotic changes in
Ercc1-/Δ mice treated with XJB-5–131 (Fig. 5H and Supplemental
Fig. 7). This demonstrates that a mitochondrial-targeted radical sca-
venger is sufficient to attenuate endogenous oxidative DNA damage,
cellular senescence and aging.

4. Discussion

Although cellular senescence has been demonstrated to drive aging
[2], it is not known what endogenous processes are primarily re-
sponsible for causing cellular senescence in mammals, particularly in
post-mitotic tissues. Here, we used mice in which DNA repair was at-
tenuated genetically. By definition, the primary insult in untreated
Ercc1-/Δ mice is unrepaired endogenous DNA damage to the nuclear
genome. Not surprisingly, the Ercc1-/Δ mice accumulate senescent cells

more rapidly than WT mice. This formally demonstrates that physio-
logically-relevant types and levels of endogenous DNA damage are able
to trigger the time-dependent accumulation of senescent cells.

The surprising discovery is that there is increased ROS in tissues of
the Ercc1-/Δ mice. This reveals that spontaneous, endogenous nuclear
DNA damage can instigate oxidative stress. We found that elevated ROS
is likely due, at least in part, to increased enzymatic production by
xanthine oxidase (XO) and NADPH oxidase (NOX), altered mitochon-
drial metabolism, as well as an attrition of the expression and activity of
several key antioxidants, catalase, MnSOD and glutathione. Similar
events were found in aged WT mice, consistent with prior studies
[80–83]. The dramatic parallels between the progeroid and naturally
aged mice suggest that oxidative stress is an important common de-
nominator in aging.

To determine if this oxidative stress is pathological, we suppressed it
pharmacologically in Ercc1-/Δ mice with the mitochondrial-targeted
radical scavenger XJB-5–131. Chronic administration XJB-5–131 sig-
nificantly reduced both oxidative DNA damage and senescence (Fig. 5).
The reduced level of senescent cells corresponded to a reduction in age-
related morbidity. This is consistent with numerous recent studies de-
monstrating that genetic or pharmacologic elimination of senescent
cells slows age-related decline [2,4,7,8,84–86]. The observation that
suppressing oxidant production is sufficient to decreases senescence
indicates that reactive species are required to ultimately cause or
maintain senescence in response to genotoxic stress.

Analogous to our work, recent studies demonstrated increased NOX
activity in cells from patients with genome instability disorders such as
ataxia telangiectasia (AT) and Nijmegen breakage syndrome [87], as
well as Atm-/- mice [88] that model AT. Interestingly, in worms, NOX
triggers transcriptional activation of stress response mechanisms [89].
Indeed, increased ROS in Atm-/- mice appears to be pathological [88,90]
as well as a critical signaling mechanism both up and downstream of
ATM [91–93]. Increased ROS has also been reported in cells from
xeroderma pigmentosum and Cockayne syndrome patients [94,95], two
diseases caused by a defect in nucleotide excision repair, but the source
of ROS is unclear.

Our results are consistent with the oxidative stress theory of aging
originally proposed by Denham Harman [26], and the notion that a
vicious cycle of ROS generation and oxidative damage is the ultimate
driver of aging [27]. Our data also indicate that endogenous nuclear
DNA damage is able to trigger this cycle of escalating ROS abundance,
oxidative damage, senescent cell accumulation and age-related pa-
thology.

Numerous studies counter the oxidative stress theory of aging.
Notably, overexpression of MnSOD, which detoxifies O2

•-, does not
extend the lifespan of mice [96,97]. This appears at odds with our data
indicating that XJB-5–131 improves the health of Ercc1-/Δ mice. How-
ever, XJB-5–131 is able to both prevent ROS production and neutralize
existing ROS. The nitroxide radical form of XJB-5–131 can be reduced
to a hydroxylamine by accepting an electron from the electron transport
chain and subsequent protonation (Supplemental Fig. 6B), thereby
preventing electron transfer to O2 and resultant ROS production [98].
Hydroxylamines act as robust reducing agents by hydrogen atom
transfer to free radicals and non-radicals such as O=NOO-, resulting in
a significant diminution of oxidative/nitrosative stress. While ad-
mittedly, reaction of hydroxylamine with O2

•- will result in H2O2 gen-
eration, it will neutralize O=NOO- and by default, this process

Fig. 4. Reduced antioxidant capacity in progeroid Ercc1-/Δ mice and old WT mice. (a) Liver metabolite string analysis of 3-month-old WT (n=6) versus Ercc1−/Δ

mice (n= 7). Metabolites shaded in blue are significantly more abundant in the mutant animals. (b) Unbiased differential proteomic analysis of liver from 5 to 8-
month-old adult WT, 25–30-month-old aged WT and 4-month-old progeroid Ercc1−/Δ mice (n= 4–8) revealed a significant decrease in the abundance of antioxidant
proteins. (c) Catalase activity in the liver of Ercc1−/Δ and WT mice at various ages (n= 3–5 per group). (d) Cytosolic and (e) mitochondrial superoxide dismutase
(SOD) activity in the liver of Ercc1−/Δ and WT mice at various ages (n= 3 per group). (f) The ratio of oxidized glutathione to reduced glutathione (GSH/GSSG) in
livers from Ercc1−/Δ and WT mice of various ages (n= 3–14 per group). Values represent the mean± SD, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
determined by one-way ANOVA with Tukey’s test.
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regenerates the nitroxide form of XJB-5–131, thus recycling the radical
scavenger [75]. In contrast, SOD solely reduces O2

•- levels, yet gen-
erates H2O2 in the process (2O2

•- → H2O2 + O2) which is likely not
well-neutralized in older organisms due to the significant reduction in
catalase expression and activity (Fig. 4B-C and Supplemental Fig. 5).
Thus, in the presence of elevated levels of mitochondrial O2

•-, over-
expression of MnSOD may yield increased formation of H2O2; an oxi-
dant that is freely diffusible and thus capable of mediating oxidative
damage distant from the mitochondrion. This phenomenon has indeed
been reported [99] and the combination of SOD with CAT has been
shown to afford greater protection against Fe2+-induced radical for-
mation than SOD alone [100].

Another argument against the oxidative stress theory of aging is
based on the PolγD257A mice, which age rapidly due to increased mu-
tations in the mitochondrial genome caused by inactivation of the
exonuclease domain of the mitochondrial polymerase γ [101]. Unlike
the progeroid Ercc1−/Δ mice, ROS is not increased in tissues of
PolγD257A mice, countering the notion that oxidative stress drives aging.
However, mutagenesis in the PolγD257A mice is stochastic and there are
thousands of mitochondrial genomes per cell, making it plausible that
phenotypes are less consistent in PolγD257A mice than in Ercc1−/Δ mice
where every cell is affected. Therefore, the lack of increased ROS in
PolγD257A mice was not considered to counter the mitochondrial theory
of aging [101].

In conclusion, we demonstrate that spontaneous, endogenous, nu-
clear DNA damage leads to an accelerated accumulation of senescent
cells in vivo. In addition, we provide novel evidence supporting the
oxidative stress theory of aging. In a mammalian system where spon-
taneous endogenous DNA damage is the primary insult, cellular se-
nescence and ROS abundance is increased, leading to further damage
and senescence. Attenuating mitochondrial-ROS defuses this cycle and
suppresses age-related decline, implicating it as causative. Taken

together, this supports the potential of radical scavengers as a treatment
for age-related co-morbidities.

Acknowledgements

This work was supported by the National Institutes of Health [grant
numbers P01-AG043376, ES016114, P20 GM109098, K99-AG049126,
R00AG036817, CA076541, CA101864, AG044376, AI068021,
P30AG024827, 5P20GM109098 and P30CA047904]. LJN had addi-
tional funding from the Ellison Medical Foundation (AG-NS-0303-05).

Conflict of interest

The authors declare no conflicts of interest.

Author contributions

SQG, AUG, HFS and SM contributed data that led to this manuscript.
ARR, CHF, JST, MJY and SJM conducted the in vivo experiments. JW
and YW measured cyclopurine adducts. EEK, MJY, TAR, NCM, MAR,
SCW, ECP, PJP and CMS measured endogenous ROS. EMS, MCF and PW
synthesized, purified and characterized XJB-5-131. CEB developed the
p16-luciferase mouse strain and helped with imaging analysis. CET,
MJY and NFL contributed to measuring senescence in tissues. LHR did
the histopathological analysis. LAN and NVV measured bone density.
HBT and NAY did proteomic analysis. CHJ and GS performed meta-
bolomic analysis. JC, BT, RASR and MJY measured oxidative damage.
XL measured mitochondrial respiration. HPV and PLO measured TIFs.
NVV, CMS, DBS, CEB, PW, YW, PDR and LJN oversaw various aspects of
the research. ARR, SQG, AUG, HFS, MJY, PDR, EEK and LJN con-
tributed to the manuscript preparation.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the
online version at http://dx.doi.org/10.1016/j.redox.2018.04.007.

References

[1] C.E. Burd, M.S. Gill, L.J. Niedernhofer, P.D. Robbins, S.N. Austad, N. Barzilai,
J.L. Kirkland, Barriers to the Preclinical Development of Therapeutics that Target
Aging Mechanisms, J. Gerontol. A Biol. Sci. Med Sci. 71 (11) (2016) 1388–1394.

[2] D.J. Baker, B.G. Childs, M. Durik, M.E. Wijers, C.J. Sieben, J. Zhong, R.A. Saltness,
K.B. Jeganathan, G.C. Verzosa, A. Pezeshki, K. Khazaie, J.D. Miller, J.M. van
Deursen, Naturally occurringp16(Ink4a)-positive cells shorten healthy lifespan,
Nature 530 (7589) (2016) 184–189.

[3] B.G. Childs, D.J. Baker, T. Wijshake, C.A. Conover, J. Campisi, J.M. van Deursen,
Senescent intimal foam cells are deleterious at all stages of atherosclerosis, Science
354 (6311) (2016) 472–477.

[4] J.N. Farr, M. Xu, M.M. Weivoda, D.G. Monroe, D.G. Fraser, J.L. Onken,
B.A. Negley, J.G. Sfeir, M.B. Ogrodnik, C.M. Hachfeld, N.K. LeBrasseur,
M.T. Drake, R.J. Pignolo, T. Pirtskhalava, T. Tchkonia, M.J. Oursler, J.L. Kirkland,
S. Khosla, Targeting cellular senescence prevents age-related bone loss in mice,
Nat. Med 23 (9) (2017) 1072–1079.

[5] O.H. Jeon, C. Kim, R.M. Laberge, M. Demaria, S. Rathod, A.P. Vasserot,
J.W. Chung, D.H. Kim, Y. Poon, N. David, D.J. Baker, J.M. van Deursen,
J. Campisi, J.H. Elisseeff, Local clearance of senescent cells attenuates the

Fig. 5. A mitochondrial-targeted radical scavenger suppresses endogenous DNA damage, senescence and aging. (a) Schematic diagram of the treatment regimen with
XJB-5–131. Littermate pairs of mutant mice were administered either vehicle (sunflower seed oil) or 2mg/kg XJB-5–131 three times per week for 15 weeks, i.p.,
starting at five weeks of age. (b) Oxidative DNA damage in the liver of Ercc1-/Δ mice treated with XJB-5–131 or vehicle only (n= 3 per group) was measured by LC-
MS/MS/MS detection of cyclopurine adducts (R-cdG, S-cdG, R-cdA, S-cdA) in genomic DNA. Tissues were collected from 20-week-old animals at the end of the study.
(c) Representative images of SA-β-gal staining of liver sections from vehicle- or XJB-treated mice. (d) Total body luciferase activity was measured in p16luc/+;Ercc1-/Δ

mice treated with 8mg/kg XJB-5–131, i.p., 3X per week for 4.5 weeks and plotted relative to the signal in Ercc1-/Δ mice treated with vehicle only. Dots represent
individual animals. Graphed is the mean± SD. *p < 0.05 determined by an unpaired two-tailed Student’s t-test. (e) Representative images of 20-week-old Ercc1-/Δ

mice (siblings) treated with XJB-5–131 or vehicle only. The vehicle treated mouse shows greater ataxia (splayed-foot gait) and hind-limb wasting than the treated
animal. (f) Representative images of H&E stained sections of liver, kidney and pancreas. XJB-5–131 had less necrosis and ballooning degeneration of hepatocytes in
liver, fewer hyaline casts in the renal tubules and more islets in the pancreas, compared to mice administered vehicle only. (g) Immuno-stain detection of glial
fibrillary acidic protein (GFAP, a marker of neurodegeneration) in cerebellar sections of XJB-treated mice compared to vehicle only. Nuclei were counter-stained with
hematoxylin. (h) MicroCT analysis of the vertebral column to detect osteoporotic changes in bone.

Table 1
Chronic administration of XJB-5–131 delays the onset of age-related functional
decline in Ercc1-/Δ mice.

Age at onset (weeks)

Symptom Ercc1-/Δ +
vehicle

na Ercc1-/Δ + XJB-
5–131

nb

Dystonia 7.4 8 8.6* 10
Trembling 7.7 8 8.9 10
Kyphosis 11.7 8 13.2* 10
Ataxia 14.5 8 16.3* 10
Hind-limb wasting 14.0 8 16.0* 10
Reduced spontaneous activity 17.5 5 20.9* 5
Urinary incontinence 12.4 2 n/a 0
Fraction of symptoms delayed 10% 8 66% 8

a Ercc1-/Δ mice + vehicle; n= 8 mice, 5 ♂; 2 ♀; n indicates the number of
mice showing that symptom.

b Ercc1-/Δ mice +XJB-5–131; n= 10 mice, 6 ♂; 4 ♀.
* Individual symptoms that were significantly delayed in mice treated with

XJB-5–131; p < 0.05 one-tailed Student’s t-test.

A.R. Robinson et al. Redox Biology 17 (2018) 259–273

271

http://dx.doi.org/10.1016/j.redox.2018.04.007
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref1
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref1
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref1
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref2
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref2
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref2
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref2
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref3
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref3
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref3
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref4
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref4
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref4
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref4
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref4
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref5
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref5
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref5


development of post-traumatic osteoarthritis and creates a pro-regenerative en-
vironment, Nat. Med 23 (6) (2017) 775–781.

[6] M. Ogrodnik, S. Miwa, T. Tchkonia, D. Tiniakos, C.L. Wilson, A. Lahat, C.P. Day,
A. Burt, A. Palmer, Q.M. Anstee, S.N. Grellscheid, J.H.J. Hoeijmakers,
S. Barnhoorn, D.A. Mann, T.G. Bird, W.P. Vermeij, J.L. Kirkland, J.F. Passos,
T. von Zglinicki, D. Jurk, Cellular senescence drives age-dependent hepatic stea-
tosis, Nat. Commun. 8 (2017) 15691.

[7] C.M. Roos, B. Zhang, A.K. Palmer, M.B. Ogrodnik, T. Pirtskhalava, N.M. Thalji,
M. Hagler, D. Jurk, L.A. Smith, G. Casaclang-Verzosa, Y. Zhu, M.J. Schafer,
T. Tchkonia, J.L. Kirkland, J.D. Miller, Chronic senolytic treatment alleviates es-
tablished vasomotor dysfunction in aged or atherosclerotic mice, Aging Cell 15 (5)
(2016) 973–977.

[8] M.J. Schafer, T.A. White, K. Iijima, A.J. Haak, G. Ligresti, E.J. Atkinson,
A.L. Oberg, J. Birch, H. Salmonowicz, Y. Zhu, D.L. Mazula, R.W. Brooks,
H. Fuhrmann-Stroissnigg, T. Pirtskhalava, Y.S. Prakash, T. Tchkonia, P.D. Robbins,
M.C. Aubry, J.F. Passos, J.L. Kirkland, D.J. Tschumperlin, H. Kita, N.K. LeBrasseur,
Cellular senescence mediates fibrotic pulmonary disease, Nat. Commun. 8 (2017)
14532.

[9] J.L. Kirkland, T. Tchkonia, Cellular senescence: a translational perspective,
EBioMedicine 21 (2017) 21–28.

[10] C.E. Burd, J.A. Sorrentino, K.S. Clark, D.B. Darr, J. Krishnamurthy, A.M. Deal,
N. Bardeesy, D.H. Castrillon, D.H. Beach, N.E. Sharpless, Monitoring tumorigen-
esis and senescence in vivo with a p16(INK4a)-luciferase model, Cell 152 (1–2)
(2013) 340–351.

[11] U. Herbig, M. Ferreira, L. Condel, D. Carey, J.M. Sedivy, Cellular senescence in
aging primates, Science 311 (5765) (2006) 1257.

[12] Y. Liu, H.K. Sanoff, H. Cho, C.E. Burd, C. Torrice, J.G. Ibrahim, N.E. Thomas,
N.E. Sharpless, Expression ofp16(INK4a) in peripheral blood T-cells is a biomarker
of human aging, Aging Cell 8 (4) (2009) 439–448.

[13] F. d'Adda di Fagagna, P.M. Reaper, L. Clay-Farrace, H. Fiegler, P. Carr, T.
Von Zglinicki, G. Saretzki, N.P. Carter, S.P. Jackson, A DNA damage checkpoint
response in telomere-initiated senescence, Nature 426 (6963) (2003) 194–198.

[14] J.M. van Deursen, The role of senescent cells in ageing, Nature 509 (7501) (2014)
439–446.

[15] B.G. Childs, M. Durik, D.J. Baker, J.M. van Deursen, Cellular senescence in aging
and age-related disease: from mechanisms to therapy, Nat. Med 21 (12) (2015)
1424–1435.

[16] G. Nelson, O. Kucheryavenko, J. Wordsworth, T. von Zglinicki, The senescent
bystander effect is caused by ROS-activated NF-kappaB signalling, Mech. Ageing
Dev. 170 (2018) 30–36.

[17] M.C. Cupit-Link, J.L. Kirkland, K.K. Ness, G.T. Armstrong, T. Tchkonia,
N.K. LeBrasseur, S.H. Armenian, K.J. Ruddy, S.K. Hashmi, Biology of premature
ageing in survivors of cancer, ESMO Open 2 (5) (2017) e000250.

[18] M. Fumagalli, F. Rossiello, C. Mondello, F. d'Adda di Fagagna, Stable cellular se-
nescence is associated with persistent DDR activation, PloS One 9 (10) (2014)
e110969.

[19] F. Rodier, D.P. Munoz, R. Teachenor, V. Chu, O. Le, D. Bhaumik, J.P. Coppe,
E. Campeau, C.M. Beausejour, S.H. Kim, A.R. Davalos, J. Campisi, DNA-SCARS:
distinct nuclear structures that sustain damage-induced senescence growth arrest
and inflammatory cytokine secretion, J. Cell Sci. 124 (Pt 1) (2011) 68–81.

[20] F. Sierra, Is (your cellular response to) stress killing you? J. Gerontol. A Biol. Sci.
Med Sci. 61 (6) (2006) 557–561.

[21] A. Papadopoulou, D. Kletsas, Human lung fibroblasts prematurely senescent after
exposure to ionizing radiation enhance the growth of malignant lung epithelial
cells in vitro and in vivo, Int J. Oncol. 39 (4) (2011) 989–999.

[22] B.D. Chang, E.V. Broude, M. Dokmanovic, H. Zhu, A. Ruth, Y. Xuan, E.S. Kandel,
E. Lausch, K. Christov, I.B. Roninson, A senescence-like phenotype distinguishes
tumor cells that undergo terminal proliferation arrest after exposure to anticancer
agents, Cancer Res 59 (15) (1999) 3761–3767.

[23] D.E. Barnes, T. Lindahl, Repair and genetic consequences of endogenous DNA base
damage in mammalian cells, Annu Rev. Genet 38 (2004) 445–476.

[24] Y. Yu, Y. Cui, L.J. Niedernhofer, Y. Wang, Occurrence, biological consequences,
and human health relevance of oxidative stress-induced DNA damage, Chem. Res
Toxicol. 29 (12) (2016) 2008–2039.

[25] E. Cadenas, K.J. Davies, Mitochondrial free radical generation, oxidative stress,
and aging, Free Radic. Biol. Med 29 (3–4) (2000) 222–230.

[26] D. Harman, Origin and evolution of the free radical theory of aging: a brief per-
sonal history, 1954–2009, Biogerontology 10 (6) (2009) 773–781.

[27] Y.C. Jang, H. Van Remmen, The mitochondrial theory of aging: insight from
transgenic and knockout mouse models, Exp. Gerontol. 44 (4) (2009) 256–260.

[28] D.F. Dai, Y.A. Chiao, D.J. Marcinek, H.H. Szeto, P.S. Rabinovitch, Mitochondrial
oxidative stress in aging and healthspan, Longev. Health. 3 (2014) 6.

[29] S.Q. Gregg, A.R. Robinson, L.J. Niedernhofer, Physiological consequences of de-
fects in ERCC1-XPF DNA repair endonuclease, DNA Repair (Amst.) 10 (7) (2011)
781–791.

[30] L.J. Niedernhofer, G.A. Garinis, A. Raams, A.S. Lalai, A.R. Robinson,
E. Appeldoorn, H. Odijk, R. Oostendorp, A. Ahmad, W. van Leeuwen, A.F. Theil,
W. Vermeulen, G.T. van der Horst, P. Meinecke, W.J. Kleijer, J. Vijg, N.G. Jaspers,
J.H. Hoeijmakers, A new progeroid syndrome reveals that genotoxic stress sup-
presses the somatotroph axis, Nature 444 (7122) (2006) 1038–1043.

[31] A.U. Gurkar, L.J. Niedernhofer, Comparison of mice with accelerated aging caused
by distinct mechanisms, Exp. Gerontol. 68 (2015) 43–50.

[32] A. Ahmad, A.R. Robinson, A. Duensing, E. van Drunen, H.B. Beverloo,
D.B. Weisberg, P. Hasty, J.H. Hoeijmakers, L.J. Niedernhofer, ERCC1-XPF en-
donuclease facilitates DNA double-strand break repair, Mol. Cell Biol. 28 (16)
(2008) 5082–5092.

[33] S.A. Miller, D.D. Dykes, H.F. Polesky, A simple salting out procedure for extracting
DNA from human nucleated cells, Nucleic Acids Res. 16 (3) (1988) 1215.

[34] J. Wang, B. Yuan, C. Guerrero, R. Bahde, S. Gupta, Y. Wang, Quantification of
oxidative DNA lesions in tissues of Long-Evans Cinnamon rats by capillary high-
performance liquid chromatography-tandem mass spectrometry coupled with
stable isotope-dilution method, Anal. Chem. 83 (6) (2011) 2201–2209.

[35] R.C. Morales, E.S. Bahnson, G.E. Havelka, N. Cantu-Medellin, E.E. Kelley,
M.R. Kibbe, Sex-based differential regulation of oxidative stress in the vasculature
by nitric oxide, Redox Biol. 4 (2015) 226–233.

[36] J. Zielonka, J. Vasquez-Vivar, B. Kalyanaraman, Detection of 2-hydroxyethidium
in cellular systems: a unique marker product of superoxide and hydroethidine,
Nat. Protoc. 3 (1) (2008) 8–21.

[37] S.I. Dikalov, W. Li, P. Mehranpour, S.S. Wang, A.M. Zafari, Production of extra-
cellular superoxide by human lymphoblast cell lines: comparison of electron spin
resonance techniques and cytochrome C reduction assay, Biochem Pharmacol. 73
(7) (2007) 972–980.

[38] E.E. Kelley, A. Trostchansky, H. Rubbo, B.A. Freeman, R. Radi, M.M. Tarpey,
Binding of xanthine oxidase to glycosaminoglycans limits inhibition by oxypur-
inol, J. Biol. Chem. 279 (36) (2004) 37231–37234.

[39] C. Frezza, S. Cipolat, L. Scorrano, Organelle isolation: functional mitochondria
from mouse liver, muscle and cultured fibroblasts, Nat. Protoc. 2 (2) (2007)
287–295.

[40] M.D. Brand, D.G. Nicholls, Assessing mitochondrial dysfunction in cells, Biochem
J. 435 (2) (2011) 297–312.

[41] R. Tautenhahn, G.J. Patti, D. Rinehart, G. Siuzdak, XCMS Online: a web-based
platform to process untargeted metabolomic data, Anal. Chem. 84 (11) (2012)
5035–5039.

[42] G.J. Patti, R. Tautenhahn, D. Rinehart, K. Cho, L.P. Shriver, M. Manchester,
I. Nikolskiy, C.H. Johnson, N.G. Mahieu, G. Siuzdak, A view from above: cloud
plots to visualize global metabolomic data, Anal. Chem. 85 (2) (2013) 798–804.

[43] J.R. Wisniewski, A. Zougman, N. Nagaraj, M. Mann, Universal sample preparation
method for proteome analysis, Nat. Methods 6 (5) (2009) 359–362.

[44] L.L. Manza, S.L. Stamer, A.J. Ham, S.G. Codreanu, D.C. Liebler, Sample prepara-
tion and digestion for proteomic analyses using spin filters, Proteomics 5 (7)
(2005) 1742–1745.

[45] H. Bell-Temin, D.S. Barber, P. Zhang, B. Liu, S.M. Stevens Jr., Proteomic analysis
of rat microglia establishes a high-confidence reference data set of over 3000
proteins, Proteomics 12 (2) (2012) 246–250.

[46] H. Bell-Temin, P. Zhang, D. Chaput, M.A. King, M. You, B. Liu, S.M. Stevens Jr.,
Quantitative proteomic characterization of ethanol-responsive pathways in rat
microglial cells, J. Proteome Res 12 (5) (2013) 2067–2077.

[47] H. Bell-Temin, A.E. Culver-Cochran, D. Chaput, C.M. Carlson, M. Kuehl,
B.R. Burkhardt, P.C. Bickford, B. Liu, S.M. Stevens Jr., Novel molecular insights
into classical and alternative activation states of microglia as revealed by stable
isotope labeling by amino acids in cell culture (SILAC)-based Proteomics, Mol. Cell
Proteom. 14 (12) (2015) 3173–3184.

[48] F. Meng, M.C. Wiener, J.R. Sachs, C. Burns, P. Verma, C.P. Paweletz, M.T. Mazur,
E.G. Deyanova, N.A. Yates, R.C. Hendrickson, Quantitative analysis of complex
peptide mixtures using FTMS and differential mass spectrometry, J. Am. Soc. Mass
Spectrom. 18 (2) (2007) 226–233.

[49] M.C. Wiener, J.R. Sachs, E.G. Deyanova, N.A. Yates, Differential mass spectro-
metry: a label-free LC-MS method for finding significant differences in complex
peptide and protein mixtures, Anal. Chem. 76 (20) (2004) 6085–6096.

[50] J.K. Eng, T.A. Jahan, M.R. Hoopmann, Comet: an open-source MS/MS sequence
database search tool, Proteomics 13 (1) (2013) 22–24.

[51] L. Kall, J.D. Canterbury, J. Weston, W.S. Noble, M.J. MacCoss, Semi-supervised
learning for peptide identification from shotgun proteomics datasets, Nat. Methods
4 (11) (2007) 923–925.

[52] C.J. Weydert, J.J. Cullen, Measurement of superoxide dismutase, catalase and
glutathione peroxidase in cultured cells and tissue, Nat. Protoc. 5 (1) (2010)
51–66.

[53] M.E. Anderson, Determination of glutathione and glutathione disulfide in biolo-
gical samples, Methods Enzymol. 113 (1985) 548–555.

[54] M.A. Baker, G.J. Cerniglia, A. Zaman, Microtiter plate assay for the measurement
of glutathione and glutathione disulfide in large numbers of biological samples,
Anal. Biochem 190 (2) (1990) 360–365.

[55] J.S. Tilstra, A.R. Robinson, J. Wang, S.Q. Gregg, C.L. Clauson, D.P. Reay,
L.A. Nasto, C.M. Croix St, A. Usas, N. Vo, J. Huard, P.R. Clemens, D.B. Stolz,
D.C. Guttridge, S.C. Watkins, G.A. Garinis, Y. Wang, L.J. Niedernhofer,
P.D. Robbins, NF-kappaB inhibition delays DNA damage-induced senescence and
aging in mice, J. Clin. Invest 122 (7) (2012) 2601–2612.

[56] L. Kazak, A. Reyes, I.J. Holt, Minimizing the damage: repair pathways keep mi-
tochondrial DNA intact, Nat. Rev. Mol. Cell Biol. 13 (10) (2012) 659–671.

[57] P. Jaruga, M. Dizdaroglu, 8,5'-Cyclopurine-2'-deoxynucleosides in DNA: mechan-
isms of formation, measurement, repair and biological effects, DNA Repair (Amst.)
7 (9) (2008) 1413–1425.

[58] I. Kuraoka, C. Bender, A. Romieu, J. Cadet, R.D. Wood, T. Lindahl, Removal of
oxygen free-radical-induced 5',8-purine cyclodeoxynucleosides from DNA by the
nucleotide excision-repair pathway in human cells, Proc. Natl. Acad. Sci. USA 97
(8) (2000) 3832–3837.

[59] J. Wang, C.L. Clauson, P.D. Robbins, L.J. Niedernhofer, Y. Wang, The oxidative
DNA lesions 8,5'-cyclopurines accumulate with aging in a tissue-specific manner,
Aging Cell 11 (4) (2012) 714–716.

[60] X.D. Zhu, L. Niedernhofer, B. Kuster, M. Mann, J.H. Hoeijmakers, T. de Lange,
ERCC1/XPF removes the 3' overhang from uncapped telomeres and represses
formation of telomeric DNA-containing double minute chromosomes, Mol. Cell 12

A.R. Robinson et al. Redox Biology 17 (2018) 259–273

272

http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref5
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref5
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref6
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref6
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref6
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref6
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref6
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref7
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref7
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref7
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref7
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref7
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref8
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref8
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref8
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref8
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref8
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref8
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref9
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref9
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref10
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref10
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref10
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref10
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref11
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref11
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref12
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref12
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref12
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref13
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref13
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref13
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref14
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref14
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref15
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref15
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref15
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref16
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref16
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref16
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref17
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref17
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref17
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref18
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref18
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref18
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref19
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref19
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref19
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref19
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref20
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref20
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref21
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref21
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref21
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref22
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref22
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref22
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref22
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref23
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref23
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref24
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref24
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref24
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref25
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref25
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref26
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref26
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref27
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref27
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref28
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref28
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref29
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref29
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref29
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref30
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref30
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref30
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref30
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref30
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref31
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref31
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref32
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref32
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref32
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref32
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref33
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref33
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref34
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref34
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref34
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref34
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref35
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref35
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref35
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref36
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref36
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref36
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref37
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref37
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref37
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref37
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref38
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref38
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref38
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref39
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref39
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref39
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref40
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref40
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref41
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref41
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref41
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref42
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref42
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref42
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref43
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref43
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref44
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref44
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref44
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref45
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref45
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref45
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref46
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref46
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref46
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref47
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref47
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref47
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref47
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref47
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref48
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref48
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref48
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref48
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref49
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref49
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref49
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref50
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref50
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref51
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref51
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref51
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref52
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref52
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref52
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref53
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref53
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref54
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref54
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref54
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref55
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref55
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref55
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref55
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref55
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref56
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref56
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref57
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref57
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref57
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref58
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref58
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref58
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref58
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref59
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref59
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref59
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref60
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref60
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref60


(6) (2003) 1489–1498.
[61] R. Rai, S. Chang, Probing the Telomere Damage Response, Methods Mol. Biol.

1587 (2017) 133–138.
[62] A. de Vries, C.T. van Oostrom, F.M. Hofhuis, P.M. Dortant, R.J. Berg, F.R. de

Gruijl, P.W. Wester, C.F. van Kreijl, P.J. Capel, H. van Steeg, S.J. Verbeek,
Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA
excision repair gene XPA, Nature 377 (6545) (1995) 169–173.

[63] L.J. Marnett, Lipid peroxidation-DNA damage by malondialdehyde, Mutat. Res
424 (1–2) (1999) 83–95.

[64] J. Frijhoff, P.G. Winyard, N. Zarkovic, S.S. Davies, R. Stocker, D. Cheng,
A.R. Knight, E.L. Taylor, J. Oettrich, T. Ruskovska, A.C. Gasparovic, A. Cuadrado,
D. Weber, H.E. Poulsen, T. Grune, H.H. Schmidt, P. Ghezzi, Clinical Relevance of
Biomarkers of Oxidative Stress, Antioxid. Redox Signal 23 (14) (2015) 1144–1170.

[65] C.M. Harris, V. Massey, The reaction of reduced xanthine dehydrogenase with
molecular oxygen. Reaction kinetics and measurement of superoxide radical, J.
Biol. Chem. 272 (13) (1997) 8370–8379.

[66] C. Vida, I. Corpas, M. De la Fuente, E.M. Gonzalez, Age-related changes in xan-
thine oxidase activity and lipid peroxidation, as well as in the correlation between
both parameters, in plasma and several organs from female mice, J. Physiol.
Biochem. 67 (4) (2011) 551–558.

[67] J.M. Son, E.H. Sarsour, A. Kakkerla Balaraju, J. Fussell, A.L. Kalen, B.A. Wagner,
G.R. Buettner, P.C. Goswami, Mitofusin 1 and optic atrophy 1 shift metabolism to
mitochondrial respiration during aging, Aging Cell 16 (5) (2017) 1136–1145.

[68] F. Muller, The nature and mechanism of superoxide production by the electron
transport chain: its relevance to aging, J. Am. Aging Assoc. 23 (4) (2000) 227–253.

[69] L.E. Brace, S.C. Vose, K. Stanya, R.M. Gathungu, V.R. Marur, A. Longchamp,
H. Trevino-Villarreal, P. Mejia, D. Vargas, K. Inouye, R.T. Bronson, C.H. Lee,
E. Neilan, B.S. Kristal, J.R. Mitchell, Increased oxidative phosphorylation in re-
sponse to acute and chronic DNA damage, NPJ Aging Mech. Dis. 2 (2016) 16022.

[70] M.E. Harper, S. Monemdjou, J.J. Ramsey, R. Weindruch, Age-related increase in
mitochondrial proton leak and decrease in ATP turnover reactions in mouse he-
patocytes, Am. J. Physiol. 275 (2 Pt 1) (1998) E197–E206.

[71] S. Hekimi, J. Lapointe, Y. Wen, Taking a "good" look at free radicals in the aging
process, Trends Cell Biol. 21 (10) (2011) 569–576.

[72] P. Maher, The effects of stress and aging on glutathione metabolism, Ageing Res.
Rev. 4 (2) (2005) 288–314.

[73] M.P. Fink, C.A. Macias, J. Xiao, Y.Y. Tyurina, J. Jiang, N. Belikova, R.L. Delude,
J.S. Greenberger, V.E. Kagan, P. Wipf, Hemigramicidin-TEMPO conjugates: novel
mitochondria-targeted anti-oxidants, Biochem. Pharmacol. 74 (6) (2007)
801–809.

[74] V.E. Kagan, A. Bayir, H. Bayir, D. Stoyanovsky, G.G. Borisenko, Y.Y. Tyurina,
P. Wipf, J. Atkinson, J.S. Greenberger, R.S. Chapkin, N.A. Belikova, Mitochondria-
targeted disruptors and inhibitors of cytochrome c/cardiolipin peroxidase com-
plexes: a new strategy in anti-apoptotic drug discovery, Mol. Nutr. Food Res. 53
(1) (2009) 104–114.

[75] J. Trnka, F.H. Blaikie, R.A. Smith, M.P. Murphy, A mitochondria-targeted nitr-
oxide is reduced to its hydroxylamine by ubiquinol in mitochondria, Free Radic.
Biol. Med. 44 (7) (2008) 1406–1419.

[76] Z. Xun, S. Rivera-Sanchez, S. Ayala-Pena, J. Lim, H. Budworth, E.M. Skoda,
P.D. Robbins, L.J. Niedernhofer, P. Wipf, C.T. McMurray, Targeting of XJB-5-131
to mitochondria suppresses oxidative DNA damage and motor decline in a mouse
model of Huntington's disease, Cell Rep. 2 (5) (2012) 1137–1142.

[77] M.P. Fink, C.A. Macias, J. Xiao, Y.Y. Tyurina, R.L. Delude, J.S. Greenberger,
V.E. Kagan, P. Wipf, Hemigramicidin-TEMPO conjugates: novel mitochondria-
targeted antioxidants, Crit. Care Med. 35 (9 Suppl) (2007) S461–S467.

[78] V.E. Kagan, P. Wipf, D. Stoyanovsky, J.S. Greenberger, G. Borisenko,
N.A. Belikova, N. Yanamala, A.K. Samhan Arias, M.A. Tungekar, J. Jiang,
Y.Y. Tyurina, J. Ji, J. Klein-Seetharaman, B.R. Pitt, A.A. Shvedova, H. Bayir,
Mitochondrial targeting of electron scavenging antioxidants: regulation of selec-
tive oxidation vs random chain reactions, Adv. Drug Deliv. Rev. 61 (14) (2009)
1375–1385.

[79] S.Q. Gregg, V. Gutierrez, A.R. Robinson, T. Woodell, A. Nakao, M.A. Ross,
G.K. Michalopoulos, L. Rigatti, C.E. Rothermel, I. Kamileri, G.A. Garinis,
D.B. Stolz, L.J. Niedernhofer, A mouse model of accelerated liver aging caused by
a defect in DNA repair, Hepatology 55 (2) (2012) 609–621.

[80] M. Sawada, J.C. Carlson, Changes in superoxide radical and lipid peroxide for-
mation in the brain, heart and liver during the lifetime of the rat, Mech. Ageing
Dev. 41 (1–2) (1987) 125–137.

[81] R.S. Sohal, B.H. Sohal, Hydrogen peroxide release by mitochondria increases
during aging, Mech. Ageing Dev. 57 (2) (1991) 187–202.

[82] M.J. Sullivan-Gunn, P.A. Lewandowski, Elevated hydrogen peroxide and de-
creased catalase and glutathione peroxidase protection are associated with aging
sarcopenia, BMC Geriatr. 13 (2013) 104.

[83] Y. Zhu, P.M. Carvey, Z. Ling, Age-related changes in glutathione and glutathione-

related enzymes in rat brain, Brain Res. 1090 (1) (2006) 35–44.
[84] D.J. Baker, T. Wijshake, T. Tchkonia, N.K. LeBrasseur, B.G. Childs, B. van de Sluis,

J.L. Kirkland, J.M. van Deursen, Clearance of p16Ink4a-positive senescent cells
delays ageing-associated disorders, Nature 479 (7372) (2011) 232–236.

[85] J. Chang, Y. Wang, L. Shao, R.M. Laberge, M. Demaria, J. Campisi,
K. Janakiraman, N.E. Sharpless, S. Ding, W. Feng, Y. Luo, X. Wang, N. Aykin-
Burns, K. Krager, U. Ponnappan, M. Hauer-Jensen, A. Meng, D. Zhou, Clearance of
senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice, Nat.
Med. 22 (1) (2016) 78–83.

[86] Y. Zhu, T. Tchkonia, T. Pirtskhalava, A.C. Gower, H. Ding, N. Giorgadze,
A.K. Palmer, Y. Ikeno, G.B. Hubbard, M. Lenburg, S.P. O'Hara, N.F. LaRusso,
J.D. Miller, C.M. Roos, G.C. Verzosa, N.K. LeBrasseur, J.D. Wren, J.N. Farr,
S. Khosla, M.B. Stout, S.J. McGowan, H. Fuhrmann-Stroissnigg, A.U. Gurkar,
J. Zhao, D. Colangelo, A. Dorronsoro, Y.Y. Ling, A.S. Barghouthy, D.C. Navarro,
T. Sano, P.D. Robbins, L.J. Niedernhofer, J.L. Kirkland, The Achilles' heel of se-
nescent cells: from transcriptome to senolytic drugs, Aging Cell 14 (4) (2015)
644–658.

[87] M. Maciejczyk, B. Mikoluc, B. Pietrucha, E. Heropolitanska-Pliszka, M. Pac,
R. Motkowski, H. Car, Oxidative stress, mitochondrial abnormalities and anti-
oxidant defense in Ataxia-telangiectasia, Bloom syndrome and Nijmegen breakage
syndrome, Redox Biol. 11 (2017) 375–383.

[88] U. Weyemi, C.E. Redon, T. Aziz, R. Choudhuri, D. Maeda, P.R. Parekh,
M.Y. Bonner, J.L. Arbiser, W.M. Bonner, NADPH oxidase 4 is a critical mediator in
Ataxia telangiectasia disease, Proc. Natl. Acad. Sci. USA 112 (7) (2015)
2121–2126.

[89] C.Y. Ewald, J.M. Hourihan, M.S. Bland, C. Obieglo, I. Katic, L.E. Moronetti
Mazzeo, J. Alcedo, T.K. Blackwell, N.E. Hynes, NADPH oxidase-mediated redox
signaling promotes oxidative stress resistance and longevity through memo-1 in C.
elegans, Elife 6 (2017) e19493.

[90] A.D. D'Souza, I.A. Parish, D.S. Krause, S.M. Kaech, G.S. Shadel, Reducing mi-
tochondrial ROS improves disease-related pathology in a mouse model of ataxia-
telangiectasia, Mol. Ther. 21 (1) (2013) 42–48.

[91] A. Alexander, S.L. Cai, J. Kim, A. Nanez, M. Sahin, K.H. MacLean, K. Inoki,
K.L. Guan, J. Shen, M.D. Person, D. Kusewitt, G.B. Mills, M.B. Kastan, C.L. Walker,
ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS,
Proc. Natl. Acad. Sci. USA 107 (9) (2010) 4153–4158.

[92] X. Kuang, M. Yan, J.M. Ajmo, V.L. Scofield, G. Stoica, P.K. Wong, Activation of
AMP-activated protein kinase in cerebella of Atm-/- mice is attributable to accu-
mulation of reactive oxygen species, Biochem. Biophys. Res. Commun. 418 (2)
(2012) 267–272.

[93] Y. Okuno, A. Nakamura-Ishizu, K. Otsu, T. Suda, Y. Kubota, Pathological neoan-
giogenesis depends on oxidative stress regulation by ATM, Nat. Med. 18 (8) (2012)
1208–1216.

[94] E.F. Fang, H. Kassahun, D.L. Croteau, M. Scheibye-Knudsen, K. Marosi, H. Lu,
R.A. Shamanna, S. Kalyanasundaram, R.C. Bollineni, M.A. Wilson, W.B. Iser,
B.N. Wollman, M. Morevati, J. Li, J.S. Kerr, Q. Lu, T.B. Waltz, J. Tian,
D.A. Sinclair, M.P. Mattson, H. Nilsen, V.A. Bohr, NAD+ Replenishment Improves
Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA
Repair, Cell Metab. 24 (4) (2016) 566–581.

[95] E.F. Fang, M. Scheibye-Knudsen, L.E. Brace, H. Kassahun, T. SenGupta, H. Nilsen,
J.R. Mitchell, D.L. Croteau, V.A. Bohr, Defective mitophagy in XPA via PARP-1
hyperactivation and NAD(+)/SIRT1 reduction, Cell 157 (4) (2014) 882–896.

[96] V.I. Perez, A. Bokov, H. Van Remmen, J. Mele, Q. Ran, Y. Ikeno, A. Richardson, Is
the oxidative stress theory of aging dead? Biochim. Biophys. Acta 1790 (10)
(2009) 1005–1014.

[97] V.I. Perez, H. Van Remmen, A. Bokov, C.J. Epstein, J. Vijg, A. Richardson, The
overexpression of major antioxidant enzymes does not extend the lifespan of mice,
Aging Cell 8 (1) (2009) 73–75.

[98] J. Jiang, I. Kurnikov, N.A. Belikova, J. Xiao, Q. Zhao, A.A. Amoscato, R. Braslau,
A. Studer, M.P. Fink, J.S. Greenberger, P. Wipf, V.E. Kagan, Structural require-
ments for optimized delivery, inhibition of oxidative stress, and antiapoptotic
activity of targeted nitroxides, J. Pharmacol. Exp. Ther. 320 (3) (2007)
1050–1060.

[99] G.R. Buettner, C.F. Ng, M. Wang, V.G. Rodgers, F.Q. Schafer, A new paradigm:
manganese superoxide dismutase influences the production of H2O2 in cells and
thereby their biological state, Free Radic. Biol. Med. 41 (8) (2006) 1338–1350.

[100] S.Y. Qian, G.R. Buettner, Iron and dioxygen chemistry is an important route to
initiation of biological free radical oxidations: an electron paramagnetic resonance
spin trapping study, Free Radic. Biol. Med 26 (11–12) (1999) 1447–1456.

[101] G.C. Kujoth, A. Hiona, T.D. Pugh, S. Someya, K. Panzer, S.E. Wohlgemuth,
T. Hofer, A.Y. Seo, R. Sullivan, W.A. Jobling, J.D. Morrow, H. Van Remmen,
J.M. Sedivy, T. Yamasoba, M. Tanokura, R. Weindruch, C. Leeuwenburgh,
T.A. Prolla, Mitochondrial DNA mutations, oxidative stress, and apoptosis in
mammalian aging, Science 309 (5733) (2005) 481–484.

A.R. Robinson et al. Redox Biology 17 (2018) 259–273

273

http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref60
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref61
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref61
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref62
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref62
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref62
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref62
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref63
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref63
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref64
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref64
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref64
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref64
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref65
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref65
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref65
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref66
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref66
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref66
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref66
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref67
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref67
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref67
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref68
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref68
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref69
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref69
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref69
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref69
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref70
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref70
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref70
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref71
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref71
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref72
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref72
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref73
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref73
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref73
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref73
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref74
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref74
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref74
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref74
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref74
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref75
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref75
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref75
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref76
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref76
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref76
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref76
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref77
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref77
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref77
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref78
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref78
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref78
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref78
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref78
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref78
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref79
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref79
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref79
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref79
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref80
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref80
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref80
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref81
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref81
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref82
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref82
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref82
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref83
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref83
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref84
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref84
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref84
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref85
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref85
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref85
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref85
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref85
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref86
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref86
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref86
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref86
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref86
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref86
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref86
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref86
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref87
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref87
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref87
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref87
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref88
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref88
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref88
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref88
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref89
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref89
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref89
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref89
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref90
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref90
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref90
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref91
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref91
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref91
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref91
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref92
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref92
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref92
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref92
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref93
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref93
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref93
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref94
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref94
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref94
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref94
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref94
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref94
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref95
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref95
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref95
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref96
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref96
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref96
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref97
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref97
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref97
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref98
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref98
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref98
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref98
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref98
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref99
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref99
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref99
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref100
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref100
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref100
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref101
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref101
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref101
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref101
http://refhub.elsevier.com/S2213-2317(18)30173-3/sbref101

	Spontaneous DNA damage to the nuclear genome promotes senescence, T redox imbalance and aging
	Authors

	Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging
	Introduction
	Methods
	Chemicals and reagents
	Animal care and experimentation
	DNA extraction and measurement of cyclopurine DNA lesions
	Fluorescence in situ hybridization for telomere-specific γH2AX foci
	Senescence-associated β-galactosidase (SA-β-gal) staining of tissue
	IVIS in vivo imaging detection of luciferase activity
	RNA isolation and qPCR
	Biochemical detection of superoxide
	Immuno-spin trapping of biomolecular free radicals
	Lipid peroxidation
	Xanthine oxidase activity
	NADPH oxidase activity
	Mitochondrial respiration
	Metabolite extraction
	Global metabolomic analysis
	Liver proteomic analysis
	Catalase activity
	Superoxide dismutase activity
	Glutathione analysis
	Immunoblotting
	Chronic treatment of mice with XJB-5–131
	Micro-computed tomography measurement of bone density
	Statistics

	Results
	Ercc1−/Δ mice have accelerated accumulation of spontaneous oxidative DNA damage
	Ercc1−/Δ mice have accelerated accumulation of senescent cells
	Ercc1-/∆ mice demonstrate elevated ROS abundance
	Increased ROS production as a source of oxidative stress
	Decreased antioxidant activity and levels contribute to excess ROS
	A mitochondrial-targeted radical scavenger suppresses senescence
	A mitochondrial-targeted radical scavenger suppresses aging symptoms and pathology

	Discussion
	Acknowledgements
	Conflict of interest
	Author contributions
	Supplementary material
	References


